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ABSTRACT

In this paper we address the difficult problem of separating
multiple speakers in a real-world situation, were the record-
ings are not just instantaneous mixtures, but rather mix-
tures of filtered versions of the sources. The enhancement
over the approaches already presented by other researchers
is that our model allows direct-path, zero-delayed versions
of all the sources to be present in each one of the mixtures (a
difficult approach because it introduces recursiveness in the
model, but a closer to the reality one). The update rules are
all derived in matrix form (suitable for computing environ-
ments, e.g Matlab), with special attention to the diagonals
of those matrices, in order to avoid “temporal whitening”
at the output. Extending those update rules to ones based
on “natural” gradient is also addressed.

1. INTRODUCTION

Blind separation of independent sources (BSS) is a grow-
ing area with potential in many applications (enhancement
of biomedical images and signals, efficient bandwidth usage
in wireless communications, noise suppression in sonar and
radar signals, etc). Recent research (equivariant adaptive
algorithm by Cardoso and Laheld, 1996 [8], entropy maxi-
mization by Bell and Sejnowski, 1995 [6], natural gradient
approach by Amari et al., 1996 [2],1998 [1]), has produced
robust and fast solutions to the problem of blind separation
of instantaneous mixtures, namely the case:
x(k) = A - s(k) (1)

where x(k) = [z1(k)...2n(k)]" is the N-dimensional dis-
crete time vector of the recordings at time k, s(k) = [s1(k)
. sam(k)]T is the M-dimensional vector of the source sig-
nals also at time k, and A is the (N x M)-dimensional
matrix of mixing coefficients. The prevailing technique em-
ployed to blindly achieve the desired signal separation is
the one that adjusts the coefficients in a single-layer neu-
ral network so that the entropy at the output is maximized
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(equivalently, mutual information between outputs is being
minimized, Zhang et al. [28], or mutual information be-
tween the inputs and the outputs is being maximized, Bell
and Sejnowski [7], [5]). Since any mixture of statistically
independent signals has lower entropy that the non-mixed
versions, maximization of entropy leads to source separa-
tion. Using such information theoretic principles to solve
the inverse problem is extremely versatile because it does
not rely on modeling the underlying physical phenomena,
Cardoso and Laheld [8]. For real world situations though,
the model of instantaneous mixing is not a good one. Not
only in speech, but also in other applications (sonar, EEGs,
etc.), delayed and filtered versions of the sources (e.g. due
to echoes) get recorded along with the direct-path waves,
thus suggesting a mixing architecture more of the form:

x(k) = ZA, -s(k—1)

1=0

(2)

where the various A;’s are the (N x M)-dimensional ma-
trices of mixing coefficients at different time lags extending
up to lag L. This scheme is equivalent to having each one of
the sources s;(k) being passed through an FIR filter Aj;(z)
of L +1 taps (Aji(z) = EILZO[Al]ji -2~ in the frequency
domain), before being picked up by the microphone j. Thus
eq.(2) written in the frequency domain for the 2-sources 2
microphones case (Figure 1), looks as:

xi(z) | _

x2(2) |
Significant work has been done in this case, either in the
time-domain pursuing the feedforward architecture case by
Amari, Cichocki and colleagues [9, 4, 3, 11, 10], where FIR
filters acting directly on the recordings are being learned,
or using a more intuitive feedback architecture as in the
works of Torkkola, [24, 25], and Lee et al. later, [19], or
in the frequency-domain where time-convolutions are just
multiplications and the whole problem collapses to the in-
stantaneous mixing/unmixing one, Smaragdis [23].

An(z)
A21 (z)

A12 (Z)
A22(z)



2. ARCHITECTURE

The principle behind the time-domain approaches is the
same as for the instantaneous mixing/unmixing case: Maxi-
mization of the entropy at the output of the network leads to
separation AND deconvolution, because as with the mixing
of different statistically independent sources, redundant de-
layed versions of the same signal result in less entropy over-
all. Due to the nature of this principle, one major drawback
that the feedforward architecture suffers is that it intro-
duces “temporal whitening” on the recovered sources. Since
every signal has inherent short-term dependencies among
its samples [26](up to some 5-6 msecs for speech signals,
translating to some 40-50 samples for a 8KHz-sampled sig-
nal), maximization of entropy at the output removes those
dependencies also, in addition to all the rest. The result
is “whitened” signals, signals that have flat spectrum, al-
though the phase information is being preserved. The blind
separation network architecture that we propose is an ex-
tension of the one introduced by Torkkola [24]. In an effort
to avoid the temporal whitening, he modeled the solution by
using a feedback architecture (Figure 1 for the two sources
- two microphones case) where estimates of the sources are
fed back in the network, on all branches, except the ones
that each particular source is being estimated out of. With
this architecture though, one should be content with ob-
taining what each sensor would observe in the absence of
the interfering sources without any other distorting effects
[24], namely u;(z) = As;(2)si(2).

Original Recorded Unmixed
Sources Mixtures Outputs
S1 X1 U1

An(z)

N

Ax21(z)

I—M ixing process—l

Figure 1: Feedback architecture for separation and decon-
volution for the 2 sources - 2 microphones case.

In principle, IIR filters can solve the problem (as long as
the direct paths are “good”, [27], meaning minimum-phase,
although non-causal filters can always be used to overcome
this problem [14]), but the particular architecture proposed
by Torkkola only models the case where each one of the mi-
crophones is directly associated with, and is closer to, one
of the sources (e.g. in a conference room with a microphone
allocated to each one of the speakers). His model fails in
the general case through the lack of feedback cross-weights
for delay I = 0, thus not being able to provide solution
when two sources arrive on two microphones without delay
relative to each other. Incorporating zero delay coefficients
into those FIR filters though, is not an easy task because of
the recursiveness it introduces: Estimates of the signals for
the same time instant appear on both sides of the model
equations. Denoting by A; the matrix having diagonal el-
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ements equal to those of A;, and all the rest equal to 0
(A} = diag(diag(A;)) in Matlab notation), and by A? the
matrix equal to A; but with its diagonal 0 (A = A; — A}),
we can rewrite eq.(2) as:

x(k) =) Al -s(k—1)+> A -s(k—1)
1=0 1=0

= > Al-stk—D)=x(k) =D A -s(k—1) (4)
1=0 1=0

or written in the z-domain for the 2x2 case:

[All(Z)Sl(Z)] [ :| _ |: Ai2(2)
()

Ao (Z)S2(Z) 0
The terms on the left hand sides of eq.(4) and eq.(5) are
what the microphones would have picked up for each source
(without the artifact of whitening), if all the other sources
and interferences were absent. Since we are after this solu-
tion, the best model for the estimates u(k) of the indepen-
dent sources s(k) is:

0
Azl(z)

sl(z)
52(2)

X1 (Z)
X2 (Z)

u(k) = W-x(k) + W -u(k 1) (6)
1=0
or in the frequency domain for the 2x2 case:
wi(z)| x1(2) 0 Wu(z)| |w(z)
[uz(z)] =W [xz(z)] + [wm(z) 0 ] [UZ(z)]
(M

where W is a diagonal matrix that has to be learned. It

is not obvious from eq.(5) why such a matrix is necessary,
since it seems without it the algorithm would be just fine. It
is there because the estimated components need to match
the dynamic range of the non-linearity at the output of
the network, and it is required to be diagonal because each
recording has to be scaled individually, with no “untreated”
portions of other channels leaking in, which would lead to
temporal whitening. The superscript on the matrices W}
means that the diagonal of those matrices is and must re-
main zero to avoid temporal whitening too. As long as the
direct-path filters are “good”, the solution for eq.(5) is:

ui(2) = [W],, - Au(2) - s1(2)
uz(2) = [W],, - Ana(2) - 52(2)
and
Wis(2) = — [W],, - Ar2(2) - (W, - Aza(2)) ™

Woai(2) = — [Wlyy - A2i(2) - (Wl - An(2)

3. UPDATE RULES

The challenge at this point on the update of the weights
of our neural network is twofold: How do we maximize the
entropy at the output of our network since the output vector



u(k) appears in both sides of eq.(6)7 How do we write the
updates of the weights in matrix form, keeping the diagonal
of the matrices zero after the update? In order to deal with
the first challenge, we solve eq.(6) for the u(k) vector:

u(k) = (I=We)™" |W - x(k) + Y W -u(k—1)
1=1

or, by substituting W = (I — W)~ ! :

u(k) =W -W-x(k)+ > _ W-W u(k-1)
1=1

)

So, the matrices that have to be learned are W and wh, L' >
! > 1. The most popular learning method in the general
nonlinear optimization framework is the stochastic gradient
updating the weights proportionally to the derivative of the
entropy with respect to those weights. The entropy of the
output can be written as the expectation of the log probabil-
ity density function of the output. Since fu(u) = fx(x)/|J|
[21, eq.5-6], where J is the Jacobian of the whole system,
we get:

H(u) —E[In(fa(u))]

—E[n(fx(x))/[J])]
—E[n(fx(x))] + E[ln|J]]

9)

So, maximization of H(u) is equivalent to maximization
of E[ln|J|], since fx(x) is set and cannot change with any
choice of the network parameters. Using this and the de-
tailed stochastic gradient analysis of our network in Ap-
pendix A, the update rules are:

AW «x W + diag'[W7T - (k) - x" (k)] (10)
AW o [T+ (k) -u” (k)] - W] (11)
AW, o diag®[WT - (k) - u” (k — 1)] (12)

where k > 0, L' > 1> 1, diag®[...] means that the diagonal
of the argument matrix is set to zero, diag'[...] means that
the non-diagonal elements are set to zero, and y(k) is a
vector depending on the nonlinearity ¥y = y(u) operating at
the output of the network. The optimal choice for the non-
linearity that assures local convergence with the fastest rate,
would be the proportional to the cdf of the sources [6, 5], [8,
2, 22]. In the optimum of the cases, a different non-linearity
should be used on each output branch, matching the pdf
of the source separated in that output. In mathematical
detail, the elements of the y(k) are

_Oyik) _ 0 Oyi(k) _ Ofs;(wi) _ fii(w)
Ayi(k) — Oyi(k) Oui(k) ~ OFs;(ui) — fs; (ui)

9: (k)

where fs; is the pdf and Fj; the cdf of the source s;. Many
selections of those functions emerged in the literature, all of
them initially concentrated on how to separate sources with
super- or sub-Gaussian characteristics. For example Bell,
Sejnowski and T-W Lee [6, 17], used the logistic function:

yi(u)) = 1+ eiui)il = Pi(ui) =1—2-u; (13)
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as an approximation to the cdf of the audio sources, because
this non-linear function is suitable for speech-like super-
Gaussian sources. Amari et al. [3, 11] used 4;(u;) = |us|* -
u; for sub-Gaussian, negative kurtosis signals (like typical
complex-valued baseband digital communication signals),
and 9;(u;) = tanh(yu;),y > 2 for super-Gaussian, positive
kurtosis signals. Although, suboptimal choices for those
non-linearities still allow the algorithm to perform sepa-
ration and deconvolution for the case of speech sources,
the selection is critical other cases like analysis of EEG
and MEG recordings. The signals generated in these cases
by the neurons in the brain have distributions that are
multimodal [16], and therefore more flexible non-linearities
should be employed. An elegant way of parameterizing the
non-linearity depending whether a sub- or super-Gaussian
source is being separated in a given branch of the net-
work, has been proposed by Girolami et al. [12, 13] by
choosing negentropy as a projection pursuit index. This
parameterization led to the formulation of the so-called Ex-
tended ICA Algorithm [18], that switches the selection of
the non-linearity depending on the sign of a stability crite-
rion, namely:

gi(k) = —z - tanh(u;) — us
where zi=1 when wu;: super-Gaussian
zi=—1 when wu;: sub-Gaussian

(14)
and the decision on the super/sub-Gaussianity is made ac-
cording to the following criterion:

z; = sgn[E{sech’®(u;)} - E{u}} — E{tanh(u;) - u;}]

That parameterized version of the non-linearity, allowing
separation with the use of only one neural network when
both super and sub-Gaussian sources are present, is suit-
able for analysis of signals originating from the brain (e.g.
has been used successfully on EEG recordings by Makeig et.
al. [15]). Although we intend to apply the algorithm to pro-
cess EEGs recorded from the surface of auditory cortex of
ferrets [20] and that selection of the non-linearity would be
the most appropriate, for the scope of this publication that
speech signals are only concerned, we will limit ourselves to
the logistic function of eq.(13).

Looking back to the update rule of W (eq.(11)), some more
manipulation is necessary in order to derive an update for
the more important matrix Wy°, because during the train-
ing of our network we should use eq.(6) and not eq.(8) for
the sources’ estimation. The multiplication of W with ma-
trices Wi on eq.(8) leads to temporal whitening, because
their product does not preserve the zero diagonal require-
ment (setting the diagonal of the product equal to zero is
not an option here!). It is tempting on the other hand at
this point, to utilize the relationship between Wy° and W
leading to AW, = —(W) 'AW(W)~! (as in [17]), but
that model is numerically unstable. The indeterminacy of
the algorithm up to scaling mentioned above has as a re-
sult, a scaling factor to be shared for each extracted source,
among the respective row of W and column of W, which
breaks the requirement that the inverse of W have unit di-
agonal elements. The situation can be circumvented by the



following manipulation:

W (W17 = (K =K (K K
= [K'-(I+[K'"-KO!
(I—|— [Kl]—l i KO)—I . [Kl]—l
N———
—Wp0 D
= (I-wo")" (15)

With this decomposition of W, a diagonal matrix, namely
D = inv(diag’ (inv(W))) (16)

multiplies W and W; on eq.(8) on the left, thus preserving
the requirements posed to the elements of those matrices,
and )

Wo® = —D - diag® (inv(W)) (17)

is used on the estimation of the sources through eq.(4).

In summary, the algorithm starts with initial conditions
W =TIand W; =0, L' > 1> 0, then updates for W, W and
Wi are calculated through eqgs (10), (11), (12) respectively,
matrices D and Wy° are calculated though egs (16), (17)
respectively, matrices W, W and W, are corrected using ma-
trix D as discussed, and finally the new estimates for the
sources are calculated using eq.(6). The whole process is
iterated until numerical convergence is achieved.

Note: The above derived update rules were based on the
stochastic gradient method for training of neural networks.
It is, however, the “natural” gradient that gives the opti-
mum update for the system parameters (faster convergence,
equivariance property, etc)[1, 3]. The derivation of those
update rules will be presented in a future publication, but
an interesting lemma is provided in Appendix B.

4. EXPERIMENTAL APPLICATIONS

These methods are currently being applied to two systems
of interest. The first is the case of speech sources which
are mixed, filtered and delayed. The second is to process
EEGs recorded from the surface of auditory cortex of ferrets
through the use of a thin microfilm array [20]. In the first
case, short time dependencies of the sources are known, so
further deconvolution with a pre-whitening scheme is pos-
sible. In the second case though, they are unknown, and so
further processing depends on the statistics of the filtered
sources separated by the above algorithm.

5. APPENDIX A - STOCHASTIC GRADIENT
ANALYSIS

The Jacobian J of the network contains all the information
on how the input affects the output, by providing all com-
binations of partial derivatives between each component of
the output vector with respect to each component of the
input vector. Using the entropy at the output of the sys-
tem as the cost function to train the network is equivalent,
as we showed earlier, to using the expected value of In(].J]).

In particular:
] = [y: (us) ]
ij ij

-2,

axj

Oyi Oui Ou;
Bui Buj a.’lfj

Ou; Ou;
a’u,j 8.’1,‘]‘
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Here, we note that the partial derivative Ou; /0u; should be
calculated using equation (6), and it is not just d;;. That
is a result of the extended architecture used that includes
versions of the signals for zero delay on the right hand side
of the model also. The determinant of the Jacobian can ac-
tually be decomposed into the product of the determinants
of the weight matrices for zero delay, and the slopes of the
nonlinear functions y; (u;):

det(J) = |J| = det(W) - det(W) - Hﬁil Y (us)
= n|J|=W(W) + (W) + 3., In(yi(u:)) (18)
The derivative with respect to a generic matrix V is:
0 oy L Oyi  Oyi(uwi) Qui _ . . Ou;
where du;/0V should be calculated from eq.(8). Now we
can calculate the various update rules:
8ln(|J|) 8ul(k)
AW o i T Z i (i (k) =557
~ W] " +diag' W™ - 3(k) -x" (k)] (19)
AW o 2BUWD T 45y (k)T W +
ow
LI
Y (k) - ZuT(k —1)- W ~ [T +3(k) - u(k)] - [F]7 (20)
AW o 28D Giag® W T (k) - uTk—1)] (1)

oW,

since for the general case that u= A B - x,

Zy 8u¢ _

6. APPENDIX B - NATURAL GRADIENT
CONSIDERATIONS

=X .

Lemma: The “natural” gradient update for matrices that
have and should maintain zero elements can be calculated
as if there were no constraints, where at the end the corre-
sponding update elements are set equal to zero.

Proof: Consider the cost function ¢(w) where some of the
elements of the vector w are and have to be kept zero under
the new updates. The “natural” descent direction updates
w by dw, so that ¢(w+dw) is minimized when dw has a
fixed length in the Reimannian space, ||dw||® = ¢2,¢ > 0,
[1]. If we set dw = ¢ - a, equivalently we can search for that
a that minimizes

d(W +dw) = ¢p(w) + eV’ (w) - a
under the constraints:
||a||2 = Zgijaiaj =a-G-a=1

ij

(22)

T
a

and -A-a=0 (23)



where G is the Riemannian metric tensor, and A is a di-
agonal matrix with diagonal elements 1 if we require the
corresponding a; to be equal to zero, or 0 otherwise (note
A? = A). In A we have combined all constraints into a
single equation which makes it easier to work with the Lan-
grangian method:

0

%[aT-V(]S(w)—/\laT-G-a—)\2aT-A-a]=0

= Vé(w) =2X\1G-a—2)\-A-a

1
:az;x[owr i—fA] Ve(w)  (24)

Applying the Matrix Inversion Lemma below, we get:

az L |gt_2g-1y (G‘lﬁA+I)_1G‘1 Vé(w)
21 A1 A1
— e - Reta (a4 2 )‘1
=a= - [G weta(e+ Ve (w)
(25)

By €q.(23) we have:
al A.-a=0=a" 4% a
=a’-AT - A-a=0
=>|A-a|’=0=>A4-a=0

= on) A (G n QA)  Va(w)

A1
So eq.(25) with the addition of eq.(26) gives:

1
- 2)\10

Vé(w) = ax G- Vo(w)

a

= dw x G- Vg (w) (26)

which is the natural gradient update for w if there were no
constraints on the values of the w elements. So, only after
we calculate dw with the above rule, do we zero out the
updates that we want to eliminate. QED.

Matrix Inversion Lemma: If A and C are non-singular
square matrices respectively, then

(A+BCD) ' =A""'—AT'B(DAT'B+C ") 'DA™"
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