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ABSTRACT

In many functional-imaging scenarios, it is a challenge to sep-
arate the response to stimulation from the other, presumably in-
dependent, sources that contribute to the image formation.When
the brain is optically imaged, the typical variabilities ofsome of
these sources force the data to lie close to a low-dimensional, non-
linear manifold. When an initial probability model is derived by
the Karhunen-Loève Transform (KLT) of the data, and some fac-
tors of this manifold happen to be accessibly embedded in suitably
chosen KLT subspaces, vector quantization has been used to char-
acterize this embedding as the locus of maximum likelihood of the
data, and to derive an improved probability model, in which the
factors—the dynamics on this locus and away from it—are esti-
mated independently. Here we show that such a description can
serve as the starting point for a convergent procedure that alterna-
tively refines the estimates of the embedding of, and the dynamics
on, the manifold. Further, we show that even a very crude initial
estimate, from a heavily mixed subspace, is sufficient for conver-
gence in a small number of steps. This opens the possibility of
hierarchical semi-blind separation of the independent sources in
optical imaging data, even when their contributions are nonlinear.

1. INTRODUCTION

Functional imaging is an increasingly popular tool for the study
of biological systems. An important category isoptical imaging of
the brain,in which the light reflected from a piece of brain tissue is
correlated with some parameter of a stimulus that is concurrently
presented to the animal (see,e.g., [4]). It is a big challenge to
separate, from the overwhelming variability due to other sources,
the part of the signal that is due to the response of the systemto
stimulation; this is asource separationproblem.
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A current method of choice is theindicator function method[3,
4], which is a variant ofLinear Discriminant Analysisand can
be traced back to Fisher [6]. It is optimal under amultidimen-
sional Gaussianassumption about the probability distribution of
the mixed sources, and is based on theKarhunen-Loève Trans-
form (KLT)[9, 12].

For non-Gaussian sources, the higher-order moments of the
distributions may be used to aid in the separation; this has given
rise to a variety of methods under the broad name ofIndependent
Component Analysis (ICA),reviewed recently in [1, 7]. In ICA,
one tries to decompose the total signal into a sum of “components”
that span 1-dimensionallinear subspaces,not necessarily orthog-
onal, and whose temporal dynamics are mutuallyindependent.

It has been shown recently [16] that the probability densityof
the dynamics of the optical signal clusters near low-dimensional
curved manifolds,embedded in suitably chosen higher-dimensional
KLT subspaces.Vector quantization (VQ)has been used to charac-
terize these distributions and to decompose the signal intoa facto-
rial representation in terms of:nonlinearparameters within these
independent manifolds,and a residual that is amenable to subse-
quent analysis [13, 16].

Here we introduce an iterative method to refine the estimates
of the embedding parameters of the manifold on one hand, and
the dynamics along it, on the other. We treat the VQ description
as a starting point in this procedure, and show that it converges
rapidly. Further, in a more generally applicable scenario,we start
from a KLT subspace in which the nonlinear manifold is heavily
mixed with other sources of variability, and the initial VQ model
can be treated as no more than an educated guess. We show that,
even under such adverse conditions, the estimation of the manifold
converges in a small number of steps to the correct solution.

Finally, we apply the procedure hierarchically to the residual,
in a step towards the building of a complete, non-linear, generative
model of the dynamics of the optical signal, in which all sources of
variability—vegetative, equipment generated, response to stimula-
tion, and Gaussian noise—are modeled as such manifolds, andthe
parameters of those models are estimated from the data set through
an iterativeanalysis by synthesisapproach.

The independent-manifolds framework presented here is re-
lated to ICA, and also to two other approaches that have been pro-
posed recently. With the hypothesis that the dynamics of a cer-
tain source occupies a particulartemporal frequency band,short-
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term multi-taper spectral estimation[20] can be used in the con-
text of space-frequency PCA[14] to find an estimate of the linear
subspace in which the manifold is embedded (e.g., [11]). Also,
relatively good separation has been achieved by the enforcing of
exact spatio-temporal decorrelation across a whole range of time
lags [2]. In the framework presented here, the results of these ap-
proaches can serve as good starting points for the convergent learn-
ing of the curved manifolds and their associated dynamics.

2. THE GAUSSIAN MODEL

The optical signal due to the cortical activity1 will be represented
by the image intensity values

� �� �
, where�� �

is a pixel grid that
contains� pixels. Anensembleof � snapshots will be denoted by�� � �� ���	
 . Briefly (see,e.g.,[15] for details), its KLT represen-
tation is given by

�� �� � � �
�� � �

�� � � � � �� �
(1)

where� � � �� �� � � �
is the rank of the ensemble,�� � � �

(ar-
ranged in non-increasing order) is theeigenspectrumof the two
correlation matrices

� �� � � � �� �
 � � �� �� �� � �� � � �
� � � � � �� �� � � � � �� �

� �� �� �! � " �� �� ��� �� � � �
� � � �

�� � � � �
� � (2)

and�� � �� ��
and��

�� �
, the respective orthonormal eigenvectors.2

With the standardmultidimensional Gaussianmodel for the
probability density# $�%

[15], theinformation contentof
� �& —the

reconstruction with the first' � � terms in (1), which is optimal
in the amount of captured signal power [12, 8]—is

( )*+ # $��& % , &
�� � -�

�� -� . (3)

Notably, this model isspherical—the KLT coefficients are ofunit
variance(2), and all contribute equally to the information.

How much of this information is useful? For the purpose
of this study, following [14, 16], we take a safe upper bound of
the signal dimensionality,' � /00

, which is well beyond the
crossover to the noise regime in the eigenspectrum of the ensem-
ble, shown in Fig. 1. This choice is supported by thesample kur-
tosesof the KLT coefficients, shown in Fig. 2, and by the spatial
structure of the eigenmodes� � �� �

(2) and the temporal structure
of the KLT coefficients (not shown).

1For the illustrations in this study, the activity of a cat cortex was
imaged optically as previously described [4]. Briefly, the cortex was il-
luminated uniformly with monochromatic light and the reflected inten-
sity was recorded with a 12-bit charge-coupled device every122 ms, for3 4 5622 snapshots7 15

min, which were subsequently cropped to8 4 9:5 ; 151 4 <2= > 6?= pixels. Additionally, all of the discussed
phenomena were invariably observed in all five data sets thatwe have ana-
lyzed so far, which were collected over a period of more than one year, in
both cat and monkey cortices, and some lasting as long

3 7 <1 hours.
2When@ 4 3 A 8

, the diagonalization ofB is easier. For most of
the ensembles in this paper,@ A A 3 A A 8

, and substantial additional
savings have been achieved, by the diagonalization of an@ ; @ matrix.
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Figure 1: The eigenspectrum of the full ensemble. Two regimes
are immediately obvious: an initial power-law regime, which we
attribute to the signal; and a final plateau-like regime. Foran in-
finitely long experiment, this plateau would be flat, at the level
of the white-noise power. For a finite experiment, the eigenspec-
trum of the noise is not flat; its shape is determined by the ratio� C� [18, 17], and this knowledge can be used to recover the true
spectrum of the signal through Bayesian estimation [5].
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Figure 2: Sample kurtoses of the distributions of KLT coefficients,D
�E� F ( /

. Notably,
D
� �� F G H. The expectation for a Gaussian distri-

bution,
0
, and a corresponding confidence interval ofI /

standard
errors, J KL C� (e.g.,p. 137 of [19]), with� � MN00

independent
samples, are also shown. Evidently, theO P $H00 � K00%

regime still
has some systematic deviations from Gaussianness, and traces of
the signal can be expected there, but not much further.

3. THE FACTORIAL MODEL OF NOISY
TRAJECTORIES DERIVED BY VECTOR

QUANTIZATION

In Section 2, KLT was used to model successfully the white noise
in the ensemble, in the regimeO Q /00

. In the O P $H� K00%
regime, the Gaussian assumption does not hold well—evidently
from Fig. 2, most of the distributions are either sub- or super-
Gaussian. Of interest are not only the marginal distributions of the
individual KLT coefficients, but also their joint distributions [13,
16]. Evidently from Fig. 3, some exhibit drastic departure from the
2-dimensional Gaussian cloud of points, with highest density at the
origin (3). In extreme cases, such as (2:7), (11:12), and (11:27) the
actual density vanishes there.

Some KLT modes with non-Gaussian marginal distributions,
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Figure 3: Phase diagrams of the dynamics,��
�� ��	
 (2), projected on the 2-dimensional KLT subspaces with the indicated pairs ofO

(cf. Fig. 2, Fig. 4, Fig. 9). For the purposes of this presentation, we will call “L2” the source that is associated with the1:2 KLT subspace,
because it is roughly along a line, and is embedded in two dimensions, and “C6,” the cyclical 11:12:16:17:26:27 source (cf. Fig. 2).
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Figure 4: The 11:16 subspace projection of the 1D trajectoryof
the C6 source (cf. Fig. 3), estimated by the LBG vector quanti-
zation algorithm [10], according to the probability metric(3) re-
stricted on the 4D 11:12:16:17 KLT subspace [16]. The number
of anchors� � / H was chosen at the end of the 1D regime of
its rate-distortion curve [16]. The centers of the Voronoi cells are
shown with circles, and the piece-wise linear model of the trajec-
tory, with a line. The snapshots in one of the cells are shown with
black points, and all the rest, with gray.

such asO P �K � N � ��
, may or may not participate together in co-

ordinated motions in higher dimensions. Strikingly, some distri-
butions, such as (11:12:27), seem to be characterized well by a
one-dimensional trajectory in a high-dimensional KLT subspace
“fattened” by noise and/or contributions from extraneous source
of variability.

Explicit in the formulation of the KLT model (3) is the as-
sumption that the origin hasmaximum likelihood.A generalization
has been suggested [16] to account for the actual locus of maxi-
mum likelihood—modeled as the “midline,”

� �� � � �
, of the proba-

bility density, where
�

is a 1-dimensional parameter (cf. Fig. 4). In
order to estimate this locus from the data,vector quantization (VQ)
has been applied previously [13, 16] to tessellate suitably-chosen
KLT subspaces into� Voronoi cells,whose centers have the prop-
erty of minimum distortion;in the entropy-based metric (3), this
is equivalent tomaximum likelihood.Further,

� �� �
has been pa-

rameterized as a piecewise-linear curve anchored at these centers.
Such a model of the C6 source (cf. Fig. 3) is shown in Fig. 4.

With
� �� �

, for any snapshot
��

, a parameter�� ���
, of the dy-

namics along the manifold, can be found, such that the manifold

element
� � �� �� ��

is closest to
��

according to the metric used for
vector quantization; this is amaximum likelihood estimate.When
theresidual—the departure from the manifold—is defined as

��� �� � �� �� �� � ( � � �� �� � � � �
(4)

the initial probability model (3) can be refined to

# $� �� �% �� # $�� % � # $ �� �� �%
(5)

where the two factors are estimated independently.

4. PROBABILISTIC MODELING OF THE DYNAMICS
ON THE MANIFOLD

The procedure in Section 3 does not assume any temporal proper-
ties of the manifold dynamics, but rather provides an estimate, �� ���

.
The dynamics of the C6 source, estimated from the trajectory

in Fig. 4, is shown in Fig. 5. Evidently from Fig. 5A, constant-rate
motion along the manifold is a reasonable initial model. Thede-
parture from this model, shown in Fig. 5B, exhibits slow, smooth
variation at some relatively large characteristics time scale. An
examination at a shorter time scale, shown in Fig. 5C, reveals a
different structure. Notably, none of these variabilitieshas oscil-
latory nature, and spectral analysis [14] is not the naturalmodel
for them. In principle a general statistical model, possibly that in-
corporates domain-specific knowledge, could be built at these time
scales; ideally, the estimated parameters could be relatedto physi-
cal causes.

Yet a different structure is revealed at the time scale of onerev-
olution along the C6 manifold—fine oscillations, shown in Fig. 5D.
While a slow change in the rate of advance is understandable,there
is noa priori expectation that some points in the cycle should be
somehow preferred, and that the probability density# $�� �%

, of
the fractional part of

�
, shown in Fig. 6, should be nonuniform.

Indeed, the placement of the anchors produced by the VQ algo-
rithm (Section 3) is according to just an estimate of the correct
metric, and any invertible continuous distortion of

�
is a priori

just as good. Here we choose the distortion that compensatesfor
the departure of the originally estimated probability density on the
manifold (Fig. 6) from the uniform. The resulting estimate of the
dynamics, shown in Fig. 5E, is pretty good—if any “fast” oscil-
lation of �� �� �

can be assumed caused by the failure to unmix the
other sources, then the peak-to-peak error are� /

%.

5. REFINEMENT OF THE EMBEDDING PARAMETERS

In Section 3, following [16],
� �� �

was modeled as a piecewise-
linear curve, in which the anchors were somehow special—they
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Figure 5: The dynamics on the C6 the manifold (cf. Fig. 4). Time is measured in snapshots, plotted on the abscissa; C6 is cyclical, and the
natural unit of measure is one revolution, plotted on the ordinate.� : the maximum likelihood estimate�� �� �

(cf. eq. 4) for the total duration
of the experiment;� : same as� , but after subtraction of a globally estimated speed with a period of

M .�K snapshots/revolution (spr);
�

: a
fraction of the record, with a local speed estimate of

M .0N
spr, the duration of one stimulus condition (block) isKN0

snapshots (see [4]
for experimental details);� : the fine structure within one block, local speedHH.LL spr;� : same as� , uniform probability model for the
fractional revolution,# $���%

(cf. Fig. 6).
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Figure 6: Departure from uniform density of the VQ-estimated
probability model along the C6 manifold (cf. Fig. 4). This depar-
ture generates the oscilatory structure at the time scale ofone rev-
olution, evident in Fig. 5D. Its removal (see Section 4) results in
the improved estimate in Fig. 5E.

were estimated directly from the data, as averages of the snap-
shots in a given Voronoi cell (cf. Fig. 4). Once an estimate�� ���
is available though, such as in Fig. 5E,

� �� �
can be estimated for

all
�
, not just for the anchors, as an average of those snapshots

with �� ���
in some range—of widthK� , centered at

�
. Then, with�� ��� � � � �� ���

, the true parameter on the manifold (which is not
known),

�� ���
, the true, and�� ���

, the estimated departure from
�
,

��	 �� � �� 
�� �� � ����� ��	 � 
� �� � �� ���� � �� � � �� ��� ��	 (6)

where and
���

is the true residual (cf. eq. 4), presumably indepen-
dent of

�
. Its average will tend to a constant, possibly vanish-

ing, with amplitude of the stochastic fluctuations, vanishing withHC�� .
A systematic source of error in the estimate��	

is obvious
when the term

� �� � �� ����
in (6) is expanded in a Taylor series.

Since the averaging in (6) is symmetric around
�
, the contribu-

tion of the odd derivatives will tend to vanish withHC�� , and the
contribution of the even ones, of orderK�, will grow as� �� .

These systematic errors depend on the derivatives of
� �� �

,
whose estimates, in turn, depend on the stochastic errors. The op-
timal choice of� will be pursued elsewhere. Notably,K� can
never be of order smaller than the peak-to-peak error in the es-
timate of �� ���

; this increases the systematic error, but does not

decrease the stochastic. Since these error are coupled together,
here we make the heuristic choice of� � the peak-to-peak error
in �� �� �

; in Fig. 5E it is � /
%.

6. CONVERGENT LEARNING OF THE MANIFOLD

With a refined estimate of the manifold,�� �� �
, for example pro-

duced by the method in Section 5, can a refined estimate be pro-
duced of the dynamics,�� �� �

? There are a variety of possibilities,
some based on the search for linear subspaces in which the projec-
tion of the dynamics is even more unmixed, followed by the sub-
sequent iteration of the VQ-based learning procedure (Section 3).

It is not necessary that the VQ subspace contains all the signal
power of the manifold; rather, more useful for the estimation of
the dynamics is a subspace that has a relatively small admixture
of other sources. There are two causes of such mixing. On one
hand, two independent manifolds could project to the same sub-
space; this will be addressed in Section 7. On the other, two differ-
ent subspaces could get mixed because they have similar powers
(second-order moments), in which case KLT cannot separate them
even in principle. While, at least in principle, any ICA method—
sensitive also to higher order moments [1]—could be used to find
such purified linear subspaces, here we explore a result thatarises
naturally in the context of the factorial model from Section3.

The goal of the separation is, after all, on the basis of the esti-
mates �� �� �

and �� ���
, to build a model of the residual,��� �� �

(4),
and subsequently, a model the probability of this multidimensional
factor, # $ �� �� �%

(5). As usual, a Gaussian model is a reasonable
default. As illustrated in Fig. 4, subspaces in which substantial
amount of the power is due to the manifold will be deprived of it
after the factorization step (4), and in the residual KLT hierarchy
their eigenmode indices will be higher.

A desirable situation arises when the power of such subspaces
is so well accounted for by the manifold that its residual disper-
sion is below the white-noise level. Then, these weak subspaces
are well separable by KLT, as illustrated in Fig. 7A for the initial
estimate of the C6 source. Subsequently, the dynamics on theman-
ifold can be re-estimated by VQ in the weak subspace. Such alter-
native estimation of the dynamics on, and the embedding of, the
manifold can be iterated until convergence. For the C6 source, the
initial spectral regime of the residual is shown in Fig. 7B, and the
final one, in Fig. 7A,

�
. The peak-to-peak mixing errors in the fi-

nal estimate of the dynamics, which seem to be dominated by the
stochastic term in�� �� �

(6), shown in Fig. 8A, are� H%.
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�
: same as� , but C6

is refined out of the L2 residual this time; with 8
�

–� , after factorization by the successive manifold estimates�� �� �
(6) with the dynamics

estimates�� ���
from Fig. 8C–� , respectively.
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Figure 9: The 1D trajectory with� � � anchors in the 2D 1:2
KLT subspace (cf. Fig. 3).

7. HIERARCHICAL APPLICATION

Naturally, such convergent learning can be applied to any putative
independent source in the original ensemble. Here, we applyit to
the L2 source (Fig. 3): its initial VQ estimate is shown in Fig. 9,
the spectrum of its residual, in Fig. 7B,

�
, and some 2D projections

of dynamics of the residual, in Fig. 10.
In this data set, we have characterized so far two independent

sources of variability and have used the manifolds they generate to
individually factorize the data, respectively. It would bedesirable

to extract the factors hierarchically—to factorize the L2 residual
by the C6 source. As in Section 3, one would look for a KLT
subspace in which the dynamics has a 1-dimensional regime and
subsequently iterate the learning procedure until convergence.

Evidently from Fig. 10, there is a problem—the C6 manifold,
while relatively unmixed in the original ensemble, happensto be
much more mixed in the L2 residual. This can be understood from
the eigenspectra in Fig. 7B—the 3-dimensional (10:11:12) invari-
ant KLT subspace in the original (cf. Fig. 3) is now mixed in the
L2 residual (cf. Fig. 10) and corresponds to the (8:9:10:11)sub-
space. It happens that the (9:10:11) projection is a 3D cylinder,
and no 2D KLT projection exposes the circle at its base.

In this case, since estimate of the C6 dynamics is already avail-
able (Fig. 8A), it could be used as a starting point for manifold
learning. Nevertheless, the situation in Fig. 10 is rather generic,
and it would be desirable to have a systematic way to deal with
such heavy mixtures. We proceed to present one.

8. A LARGE DOMAIN OF FAST CONVERGENCE

We start with the (9:10:11) subspace of the L2 residual (Fig.10).
As in Section 3, we apply VQ and choose� � �, which is at
the end of the putative 1D regime of its rate-distortion curve [16].
As shown in Fig. 10, this initial estimate is very far from thetrue
manifold; also, the respective estimate of the dynamics, shown in
Fig. 8B, is very unreliable. Nevertheless, the factorization (4) with
these crude estimates leads to rearrangement of the KLT spectrum
that is sufficient to continue the iteration.
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Figure 10: Phase diagrams (cf. Fig. 3) of the dynamics of the L2 residual (cf. Fig. 9). Points: all snapshots; dark lines: the initial VQ
estimate of the C6 manifold,� � �; light lines: the estimate after convergence.

The second step leads to the estimate in Fig. 8C; this estimate
already captures enough structure of the dynamics, which issuffi-
cient for the the residual dispersion of a small subspace to drop be-
low the noise level, shown in Fig. 7C. Two more steps (Fig. 8D,� )
lead to an estimate, comparable to that in Fig. 8A, and one more,
to convergence.

9. DISCUSSION

Here we have confirmed the result [16] that the loci of maximum
likelihood of optical imaging data are smooth, curved, low-dimensional
manifolds. Further, we have described a method for the iterative
refinement of, alternatively, the parameters of the embedding of,
and the dynamics along, those manifolds. We have shown rapid
convergence after a good initial guess, from a relatively unmixed
KLT subspace. In a more typical scenario, we have shown fast
convergence from a heavily mixed KLT subspace. Hierarchically,
we have factorized the initial data set by these curved manifolds,
each time exposing successively simpler residuals, with less signal
power and potentially smaller number of sources of variability.

This procedure utilizes curvedindependent manifolds,embed-
ded in larger-dimensional linear subspaces; these manifolds gen-
eralize the 1-dimensional linear subspaces of ICA.

The fact that fast convergent learning is possible of curved
manifolds, the dynamics along which is independent, could lead to
the robust estimation of the parameters of a full nonlinear factorial
model of the probability density of optical imaging and, possibly,
other biomedical data. In such models, the spatial action ofthe
various independent sources of variability would be separated, and
their temporal dynamics, estimated robustly.

The current method can be refined in a number of directions.
Most interestingly, the approach described here is completely obliv-
ious to the short-term temporal correlations that exist among the
KLT coefficients and the parameters of manifold dynamics (not
shown); these are attractive targets for further research—from both
probabilistic, and neuroscientific points of view.
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