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ABSTRACT

In many functional-imaging scenarios, it is a challengegio-s
arate the response to stimulation from the other, presuymabl
dependent, sources that contribute to the image formatiimen
the brain is optically imaged, the typical variabilities sime of
these sources force the data to lie close to a low-dimensiooia-
linear manifold. When an initial probability model is destV by
the Karhunen-Loéve Transform (KLT) of the data, and songe fa
tors of this manifold happen to be accessibly embedded tatsyi
chosen KLT subspaces, vector quantization has been usédrto ¢
acterize this embedding as the locus of maximum likelihddte
data, and to derive an improved probability model, in whicé t
factors—the dynamics on this locus and away from it—are esti
mated independently. Here we show that such a description ca
serve as the starting point for a convergent procedure Heaha-
tively refines the estimates of the embedding of, and therdicsa
on, the manifold. Further, we show that even a very crudélinit
estimate, from a heavily mixed subspace, is sufficient foveo
gence in a small number of steps. This opens the possibility o
hierarchical semi-blind separation of the independentcgsuin
optical imaging data, even when their contributions ardinear.

1. INTRODUCTION

Functional imaging is an increasingly popular tool for theds

of biological systems. An important categoryogstical imaging of
the brain,in which the light reflected from a piece of brain tissue is
correlated with some parameter of a stimulus that is coratlyr
presented to the animal (seeg.,[4]). It is a big challenge to
separate, from the overwhelming variability due to othemees,
the part of the signal that is due to the response of the sysiem
stimulation; this is @ource separatioproblem.
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A current method of choice is thiedicator function methoB,

4], which is a variant ofLinear Discriminant Analysisand can
be traced back to Fisher [6]. It is optimal undemailtidimen-
sional Gaussiarassumption about the probability distribution of
the mixed sources, and is based on Kerhunen-Loéve Trans-
form (KLT)[9, 12].

For non-Gaussian sources, the higher-order moments of the
distributions may be used to aid in the separation; this hasng
rise to a variety of methods under the broad nammadépendent
Component Analysis (ICA)eviewed recently in [1, 7]. In ICA,
one tries to decompose the total signal into a sum of “commisfie
that span 1-dimensionéhear subspacesot necessarily orthog-
onal, and whose temporal dynamics are mutuiaidiependent.

It has been shown recently [16] that the probability densfty
the dynamics of the optical signal clusters near low-dircara
curved manifoldsgmbedded in suitably chosen higher-dimensional
KLT subspacesVector quantization (VQ@)as been used to charac-
terize these distributions and to decompose the signahifgoto-
rial representation in terms oftonlinear parameters within these
independent manifoldgnd a residual that is amenable to subse-
guent analysis [13, 16].

Here we introduce an iterative method to refine the estimates
of the embedding parameters of the manifold on one hand, and
the dynamics along it, on the other. We treat the VQ desoripti
as a starting point in this procedure, and show that it cgaser
rapidly. Further, in a more generally applicable scenawi® start
from a KLT subspace in which the nonlinear manifold is heavil
mixed with other sources of variability, and the initial VQodel
can be treated as no more than an educated guess. We show that,
even under such adverse conditions, the estimation of théolch
converges in a small number of steps to the correct solution.

Finally, we apply the procedure hierarchically to the raaid
in a step towards the building of a complete, non-linearegative
model of the dynamics of the optical signal, in which all smg of
variability—vegetative, equipment generated, respomséimula-
tion, and Gaussian noise—are modeled as such manifoldshand
parameters of those models are estimated from the datasegth
an iterativeanalysis by synthesepproach.

The independent-manifolds framework presented here is re-
lated to ICA, and also to two other approaches that have been p
posed recently. With the hypothesis that the dynamics ofra ce
tain source occupies a particukl@mporal frequency bandhort-



term multi-taper spectral estimatiof20] can be used in the con-
text of space-frequency PCJA4] to find an estimate of the linear
subspace in which the manifold is embeddedy([11]). Also,
relatively good separation has been achieved by the enfprfi
exact spatio-temporal decorrelation across a whole rahtj;e
lags [2]. In the framework presented here, the results afettagp-
proaches can serve as good starting points for the convdegen-
ing of the curved manifolds and their associated dynamics.

2. THE GAUSSIAN MODEL

The optical signal due to the cortical activitwill be represented
by the image intensity value(x), where{x} is a pixel grid that
containsV pixels. Anensembl®f T snapshots will be denoted by
{¢*(x) }ser- Briefly (seee.qg.,[15] for details), its KLT represen-
tation is given by

M

$'(x) =Y aro(x)

r=1

1)

where M < min(T, V) is the rank of the ensemblég,>} (ar-
ranged in non-increasing order) is th@enspectrunof the two
correlation matrices

M
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and{«,(x)} and{a‘}, the respective orthonormal eigenvectors.

With the standardnultidimensional Gaussiamodel for the
probability densityP[¢] [15], theinformation contenbf ¢% —the
reconstruction with the fird¥ < M terms in (1), which is optimal
in the amount of captured signal power [12, 8]—is

N
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Notably, this model ispherical—the KLT coefficients are ofinit
variance(2), and all contribute equally to the information.

How much of this information is useful? For the purpose
of this study, following [14, 16], we take a safe upper bourid o
the signal dimensionalityNV = 300, which is well beyond the
crossover to the noise regime in the eigenspectrum of thenens
ble, shown in Fig. 1. This choice is supported by saenple kur-
tosesof the KLT coefficients, shown in Fig. 2, and by the spatial
structure of the eigenmodes. (x) (2) and the temporal structure
of the KLT coefficients (not shown).

1For the illustrations in this study, the activity of a cat tesxr was
imaged optically as previously described [4]. Briefly, thartex was il-
luminated uniformly with monochromatic light and the reftat inten-
sity was recorded with a 12-bit charge-coupled device e2efyms, for
T = 8500 snapshots 28 min, which were subsequently cropped to
V = 378 x 282 = 106, 596 pixels. Additionally, all of the discussed
phenomena were invariably observed in all five data setsatbdtave ana-
lyzed so far, which were collected over a period of more thaa year, in
both cat and monkey cortices, and some lasting as1org 12 hours.

2WhenM = T < V, the diagonalization o€ is easier. For most of
the ensembles in this pape¥] << T' << V, and substantial additional
savings have been achieved, by the diagonalization dffarn M matrix.
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Figure 1: The eigenspectrum of the full ensemble. Two regime
are immediately obvious: an initial power-law regime, whige
attribute to the signal; and a final plateau-like regime. &wiin-
finitely long experiment, this plateau would be flat, at theele

of the white-noise power. For a finite experiment, the eipens
trum of the noise is not flat; its shape is determined by thie rat
V/T [18, 17], and this knowledge can be used to recover the true
spectrum of the signal through Bayesian estimation [5].
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Figure 2: Sample kurtoses of the distributions of KLT coéfits,
(a?)—3. Notably,{a?) = 1. The expectation for a Gaussian distri-
bution,0, and a corresponding confidence intervai¥ standard
errors, /24 /T (e.g.,p. 137 of [19]), withT = 8500 independent
samples, are also shown. Evidently, the [100, 200] regime still
has some systematic deviations from Gaussianness, ared wac
the signal can be expected there, but not much further.

3. THE FACTORIAL MODEL OF NOISY
TRAJECTORIESDERIVED BY VECTOR
QUANTIZATION

In Section 2, KLT was used to model successfully the whits@oi
in the ensemble, in the regime > 300. In ther € [1,200]
regime, the Gaussian assumption does not hold well—eident
from Fig.2, most of the distributions are either sub- or supe
Gaussian. Of interest are not only the marginal distrilmstiof the
individual KLT coefficients, but also their joint distribons [13,
16]. Evidently from Fig. 3, some exhibit drastic departumi the
2-dimensional Gaussian cloud of points, with highest dgagithe
origin (3). In extreme cases, such as (2:7), (11:12), an@{)the
actual density vanishes there.

Some KLT modes with non-Gaussian marginal distributions,
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Figure 3: Phase diagrams of the dynamifs. }:cr (2), projected on the 2-dimensional KLT subspaces with tucated pairs of-

(cf. Fig. 2, Fig. 4, Fig. 9). For the purposes of this preséomawe will
because it is roughly along a line, and is embedded in two nkines,

all snapshots
the snapshots in cell 0
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midline
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Figure 4: The 11:16 subspace projection of the 1D trajectdry
the C6 source (cf.Fig. 3), estimated by the LBG vector quanti
zation algorithm [10], according to the probability met(R) re-
stricted on the 4D 11:12:16:17 KLT subspace [16]. The number
of anchors@Q = 31 was chosen at the end of the 1D regime of
its rate-distortion curve [16]. The centers of the Voronglicare
shown with circles, and the piece-wise linear model of thgtr-
tory, with a line. The snapshots in one of the cells are showtim w
black points, and all the rest, with gray.

such agr € {2,5,7}, may or may not participate together in co-
ordinated motions in higher dimensions. Strikingly, sonstrd
butions, such as (11:12:27), seem to be characterized wedl b
one-dimensional trajectory in a high-dimensional KLT qdrse
“fattened” by noise and/or contributions from extraneoasrse
of variability.

Explicit in the formulation of the KLT model (3) is the as-
sumption that the origin hasaximum likelihoodA generalization
has been suggested [16] to account for the actual locus of max
mum likelihood—maodeled as the “midline}’ (9, x), of the proba-
bility density, wherd is a 1-dimensional parameter (cf. Fig. 4). In
order to estimate this locus from the dategtor quantization (VQ)
has been applied previously [13, 16] to tessellate suitabbsen
KLT subspaces int@) Voronoi cellswhose centers have the prop-
erty of minimum distortion;in the entropy-based metric (3), this
is equivalent tanaximum likelihood Further,C(8) has been pa-
rameterized as a piecewise-linear curve anchored at tleesers.
Such a model of the C6 source (cf. Fig. 3) is shown in Fig. 4.

With C(6), for any snapshap’, a parametef(t), of the dy-
namics along the manifold, can be found, such that the mianifo
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call “L2" the source that is associated with the KLT subspace,
and “C6,” the cyclical 11:12:16:17:26:27 sourdeig). 2).

elementC/(4(t)) is closest tap! according to the metric used for
vector quantization; this is maximum likelihood estimat®/hen
theresidual—the departure from the manifold—is defined as

$(x) = ¢'(x) — C(A(2), %) @)
the initial probability model (3) can be refined to
Plo(x)] £ PA] x PIp(x)] 5)

where the two factors are estimated independently.

4. PROBABILISTIC MODELING OF THE DYNAMICS
ON THE MANIFOLD

The procedure in Section 3 does not assume any temporalrprope
ties of the manifold dynamics, but rather provides an ed8pAét).

The dynamics of the C6 source, estimated from the trajectory
in Fig. 4, is shown in Fig. 5. Evidently from FigA5 constant-rate
motion along the manifold is a reasonable initial model. ke
parture from this model, shown in FigB5exhibits slow, smooth
variation at some relatively large characteristics timalesc An
examination at a shorter time scale, shown in Fig.5C, revaal
different structure. Notably, none of these variabilities oscil-
latory nature, and spectral analysis [14] is not the natmmadiel
for them. In principle a general statistical model, possthht in-
corporates domain-specific knowledge, could be built edhiene
scales; ideally, the estimated parameters could be refafglysi-
cal causes.

Yet a different structure is revealed at the time scale ofrexe
olution along the C6 manifold—fine oscillations, shown ig.FD.
While a slow change in the rate of advance is understandiisies
is noa priori expectation that some points in the cycle should be
somehow preferred, and that the probability den#f{6}], of
the fractional part of 8, shown in Fig. 6, should be nonuniform.
Indeed, the placement of the anchors produced by the VQ algo-
rithm (Section 3) is according to just an estimate of the exirr
metric, and any invertible continuous distortion éfis a priori
just as good. Here we choose the distortion that compenkates
the departure of the originally estimated probability dgnsn the
manifold (Fig. 6) from the uniform. The resulting estimafetie
dynamics, shown in Fig.5 is pretty good—if any “fast” oscil-
lation of 8(t) can be assumed caused by the failure to unmix the
other sources, then the peak-to-peak errorafdso.

5. REFINEMENT OF THE EMBEDDING PARAMETERS

In Section 3, following [16],C'(#) was modeled as a piecewise-
linear curve, in which the anchors were somehow specialy-the
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Figure 5: The dynamics on the C6 the manifold (cf. Fig. 4). disimeasured in snapshots, plotted on the abscissa; Cdiatyand the
natural unit of measure is one revolution, plotted on thénaitg. A: the maximum likelihood estimatit) (cf. eq. 4) for the total duration
of the experimentB: same asA, but after subtraction of a globally estimated speed witler@og 0f8.62 snapshots/revolution (spiji: a
fraction of the record, with a local speed estimate8@f spr, the duration of one stimulus condition (block)2&0 snapshots (see [4]
for experimental details)D: the fine structure within one block, local speed44 spr; E: same adD, uniform probability model for the
fractional revolutionP[{6}] (cf. Fig. 6).

decrease the stochastic. Since these error are coupletheoge

w

5

og Wf\’\ here we make the heuristic choice&f~ the peak-to-peak error

= 2 in 6(t); in Fig. BE it is = 3%.

£ .

; o / 6. CONVERGENT LEARNING OF THE MANIFOLD

©

E 1 With a refined estimate of the manifold’,(e), for example pro-

3 \ / duced by the method in Section 5, can a refined estimate be pro-

o -2 g ,/ duced of the dynamic#(t)? There are a variety of possibilities,

§ \\M some based on the search for linear subspaces in which fleepro

o 3 0 01 02 03 04 05 06 07 08 09 1 tion of the dynamics is even more unmixed, followed by the-sub
fractional revolutions sequent iteration of the VQ-based learning procedure i@e8).

Itis not necessary that the VQ subspace contains all thalsign

Figure 6: Departure from uniform density of the VQ-estinate ~Power of the manifold; rather, more useful for the estimatud
probability model along the C6 manifold (cf. Fig. 4). Thispae- the dynamics is a subspace that has a relatively small adraixt

ture generates the oscilatory structure at the time scale@fev- ~ Of other sources. There are two causes of such mixing. On one
olution, evident in Fig.B. Its removal (see Section 4) results in hand, two independent manifolds could project to the sarbe su
the improved estimate in FigE5 space; this will be addressed in Section 7. On the other, iffieyd

ent subspaces could get mixed because they have similarpowe
(second-order moments), in which case KLT cannot separate t
were estimated directly from the data, as averages of the-sna even in principle. While, at least in principle, any ICA meth—
shots in a given Voronoi cell (cf. Fig.4). Once an estiméte) sensitive also to higher order moments [1]—could be usedtb fi
is available though, such as in Figg,5C(#) can be estimated for ~ such purified linear subspaces, here we explore a resulatisats
all 6, not just for the anchors, as an average of those snapshotsaturally in the context of the factorial model from Sectn

with é(t) in some range—of widtRA, centered af. Then, with The goal of the separation is, after all, on the basis of tkie es
8(t) = 6 + h(t), the true parameter on the manifold (which is not matesC(#) and6(t), to build a model of the residua’(x) (4),
known), h(t), the true, and(t), the estimated departure frain and subsequently, a model the probability of this multidisienal

N factor, P[¢(x)] (5). As usual, a Gaussian model is a reasonable
~ . _ . / I - ; .
Ca(9) = <¢ >\é(:)—9|§A = (c(e + h(t)) + ¢ >|7L(t)‘SA (6) default. As |Ilustrate<_j in Fig. 4, subsp_aces in which sgma _

~ amount of the power is due to the manifold will be deprivedtof i
where andp® is the true residual (cf. eq. 4), presumably indepen- after the factorization step (4), and in the residual KLTraiehy
dent of§. Its average will tend to a constant, possibly vanish- their eigenmode indices will be higher.

ing, with amplitude of the stochastic fluctuations, vamighwith A desirable situation arises when the power of such subspace
1/VA. ~ is so well accounted for by the manifold that its residuapdis

A systematic source of error in the estimaig is obvious sion is below the white-noise level. Then, these weak sudespa
when the termC(6 + h(t)) in (6) is expanded in a Taylor series. are well separable by KLT, as illustrated in Fig fr the initial
Since the averaging in (6) is symmetric arouhdthe contribu- estimate of the C6 source. Subsequently, the dynamics anahe
tion of the odd derivatives will tend to vanish Willﬂ\/Z, and the ifold can be re-estimated by VQ in the weak subspace. Sueh alt
contribution of the even ones, of ord2k, will grow as A", native estimation of the dynamics on, and the embeddinghef, t

These systematic errors depend on the derivativeS'(6), manifold can be iterated until convergence. For the C6 syuhe
whose estimates, in turn, depend on the stochastic errbesop- initial spectral regime of the residual is shown in FiB, and the
timal choice of A will be pursued elsewhere. NotabB®A can final one, in Fig. A,C. The peak-to-peak mixing errors in the fi-

never be of order smaller than the peak-to-peak error in $he e nal estimate of the dynamics, which seem to be dominatedéoy th
timate of §(t); this increases the systematic error, but does not stochastic term il€’(8) (6), shown in Fig. 8, arex 1%.
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Figure 7: Eigenspectra of residuals (cf. Fig. A).the eigenspectrum tails of the successive residuals asfinement of the C6 manifold
proceeds out of the original ensemble (after first step,i@e8; after convergence, Section @: decrease of the unaccounted-for signal
power after factorization by the indicated manifolds (ovéd, Fig. 1; C6, Fig. A; L2, Section 7; L2+C6, Section 8 same asA, but C6

is refined out of the L2 residual this time; witl®8-E, after factorization by the successive manifold estimétg®) (6) with the dynamics

estimatesé(t) from Fig. 8C—FE, respectively.
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Figure 8: Estimateé(t) of the dynamics on the C6 the manifold (cf. Fig. 5), with emfdaniform densities, as described in Section 4.
A: convergence after one step of the iterative learning desttin Section 6, all other parameters as in Fig.B: initial VQ estimate with
the@ = 6 manifold in Fig. 10;,C—E: the three subsequent estimates (cf. Fg).7

to extract the factors hierarchically—to factorize the le3idual

2.5 Sna::rJe_SnI:_g:Z ® by the C6 source. As in Section 3, one would look for a KLT
midline . - : . . .

2t subspace in which the dynamics has a 1-dimensional reginhe an
15 | subsequently iterate the learning procedure until comrerg.

1t Evidently from Fig. 10, there is a problem—the C6 manifold,
05 while relatively unmixed in the original ensemble, happtmbe

0r much more mixed in the L2 residual. This can be understoad fro
-0.5 the eigenspectra in FigB/—the 3-dimensional (10:11:12) invari-

At ant KLT subspace in the original (cf. Fig. 3) is now mixed i th
15 | L2 residual (cf. Fig. 10) and corresponds to the (8:9:10sii)-

2L e space. It happens that the (9:10:11) projection is a 3D dglin
2.5 : s s s T and no 2D KLT projection exposes the circle at its base.

0.985 0.99 0.995 1 1.005 1.01 1.015

In this case, since estimate of the C6 dynamics is alreadly ava
able (Fig. &), it could be used as a starting point for manifold
Figure 9: The 1D trajectory witl) = 7 anchors in the 2D 1:2  |earning. Nevertheless, the situation in Fig. 10 is rathesregic,
KLT subspace (cf. Fig. 3). and it would be desirable to have a systematic way to deal with
such heavy mixtures. We proceed to present one.

7. HIERARCHICAL APPLICATION 8. A LARGE DOMAIN OF FAST CONVERGENCE

Naturally, such convergent learning can be applied to atgtive We start with the (9:10:11) subspace of the L2 residual (Eog.
independent source in the original ensemble. Here, we apay As in Section 3, we apply VQ and choo&k = 6, which is at
the L2 source (Fig. 3): its initial VQ estimate is shown in g the end of the putative 1D regime of its rate-distortion euii6].
the spectrum of its residual, in Fig8C, and some 2D projections  As shown in Fig. 10, this initial estimate is very far from thee

of dynamics of the residual, in Fig. 10. manifold; also, the respective estimate of the dynamicswshin
In this data set, we have characterized so far two indepé&nden Fig. 8B, is very unreliable. Nevertheless, the factorization (thw
sources of variability and have used the manifolds they gea¢o these crude estimates leads to rearrangement of the KLTrgpec

individually factorize the data, respectively. It would desirable that is sufficient to continue the iteration.
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Figure 10: Phase diagrams (cf. Fig. 3) of the dynamics of thadsidual (cf. Fig.9). Points: all snapshots; dark lind® initial VQ
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