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ABSTRACT

We propose a novel algorithm for Independent Compo-
nent Analysis (ICA) that is based on an electric field
metaphor. As with all ICA techniques, the algorithm
searches for a demixing model that produces compo-
nents whose joint distribution matches the factorial
distribution (i.e., the product of the marginal distri-
butions). The joint and factorial distributions are rep-
resented as positively and negatively charged particles,
respectively, and the dynamics of the search are based
on the interactions among particles. The algorithm can
deal with arbitrary distributions for the sources, non-
linear mixing functions, noisy observations, and an un-
equal number of source and mixture components. The
limitation of the algorithm is that it does not scale with
the number of sources. Nonetheless, we demonstrate
that the algorithm can solve challenging ICA problems
that are beyond the capabilities of other ICA methods.

1. INTRODUCTION

Independent component analysis (ICA) is a method
that discovers a representation of multivariate data
in which the statistical dependence among the com-
ponents is minimized. The observed data, a D-
dimensional random variable z, is assumed to have
been generated by a mixing process that operates on
a set of D' independent source variables. The task of
ICA is to determine a demixing transformation that
recovers the source variables.

The primary approaches to ICA fall into two cat-
egories: model-based methods and global density-
approximation methods. Model-based methods assume
a parameterized model of the mixing function, e.g.,
a linear transformation, and the distribution of the
source variables, e.g., Gaussian. Prominent model-
based algorithms include maximum entropy approaches
[1, 21] and maximum posteriori approaches [17, 27].
Maximum likelihood estimation is used to determine
the model parameters. Global density-approzimation
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methods involve characterizing data distributions in
terms of a relatively small number of parameters.
These methods rely on an indicator function that can
compute the degree of independence of the compo-
nents in a straightforward manner from parameters
of the global density approximation. These methods
search for a transformation of the observed data that
yields a good measure of independence. Most global
density-approximation methods rely on cumulants and
Cramer-Edgeworth or Gram-Charlier expansion for ap-
proximating densities [6, 7, 26, 25], and/or utilize as a
measure of independence cumulant tensors [4], or other
nonlinear functions of the parameters [3, 5, 13]. Model-
based and global density-approximation methods can
be unified in a general contrast function framework [10],
which permits a fixed-point algorithm for minimizing
the contrast function [11], thereby enforcing indepen-
dence of the demixing components.

The goal of ICA research is to discover methods
that: (1) allow for arbitrary source distributions, (2)
can accommodate nonlinear mixing functions, (3) per-
form well when the number of mixing components is
smaller than the number of source components, (4) can
handle noise in the observations, (5) operate in a com-
putationally efficient manner, and (5) scale to high di-
mensional data. All existing algorithms fail on at least
several of these criteria.

Model-based methods generally assume linear mix-
ing functions and unimodal distributed sources (al-
though some work has been done to overcome the
source restriction, e.g., [15]). The strength of model-
based methods is that they are fast and in most cases
robust to variation in initial conditions and learning pa-
rameters. Global density-approximation methods face
a trade off: describing the joint distribution of the ob-
served data with a large number of parameters allows
the method to represent arbitrary distributions, but
is computation intensive [7]; with a small number of
parameters, the method can represent only limited dis-
tributions [6, 25] but is computationally efficient.



Existing ICA methods attempt to address the first
two criteria by allowing for various source distributions
and mixing functions. However, they are limited to spe-
cific distributions and mixing functions. E.g., methods
have been designed for uniform [20, 19, 18] and binary
[23, 9] distributions, and for specific mixing nonlinear-
ities [2, 26, 16, 24]. Deco [7] has developed a method
that can be applied to arbitrary source distributions
and nonlinearities, but it is slow and requires an equal
number of sources and mixtures, and prior knowledge
about the mixture function cannot be exploited.

We propose an ICA method that allows for arbi-
trary source distributions and arbitrary mixing nonlin-
earities. Our method is computationally efficient, per-
forms well even if the number of mixing components
is smaller than the number of source components, and
can handle observation noise. The limitation of our
method is that it is tractable only for low dimensional
data (roughly, D < 6).

Our method does not satisfy all of the criteria listed
above, but should one expect otherwise? It seems
highly unlikely that a method will exist that is ex-
tremely general and fast. Each method in the litera-
ture handles special cases of the general ICA problem.
The special case we have focused on—low dimensional
observations—seems particularly interesting and use-
ful, as many domains of application involve low dimen-
sional data. Examples include identification of users
entering a building [8], separating a signal from noise
[14], and symbol separation in code-division multiple
access (CDMA) telecommunications systems [22].

2. AN ELECTRIC-FIELD METHOD

Our approach involves hypothesizing an arbitrary non-
linear function approximator, such as a neural network,
as a demixing model. After the observed data has been
passed through this model, we construct a joint density
estimate of the transformed data. We can also use the
transformed data to construct a factorial density esti-
mate: the product of marginal density estimates. The
quality of the demixing model is evaluated by deter-
mining the discrepancy between the joint and factorial
density estimates, and a search is performed to identify
the model that minimizes the discrepancy.

A gradient-based method is applied to optimize the
parameters of the demixing model so as to minimize the
discrepancy (i.e., to achieve independence of the recov-
ered source components). Given an objective function
that quantifies the discrepancy, one can compute the
derivative of this function with respect to each trans-
formed data value. If one can also compute the deriva-
tive of the demixing model output with respect to the
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demixing model parameters, the two derivates can be
chained to obtain a derivative of the objective function
with respect to the demixing model parameters.

We call our approach an electric-field method, be-
cause the ICA problem is characterized as an electric
field. We treat the joint density estimate as a distribu-
tion of positive charges, treat the factorial density es-
timate as a distribution of negative charges, and treat
the search as arising from the electric field generated
by superimposing the two distributions of charges.

Rather than describing the algorithm in terms of
continuous charge distributions, we instead describe
the algorithm in terms of samples from the distribu-
tions, i.e., particles. To understand the algorithm,
consider each data point, which has been transformed
by the demixing model, as a positively charged parti-
cle in the demixed space (Figure 1). Under the as-
sumption of independence of the demixed components,
we could randomly recombine components (i.e., values
along each dimension of the space) of the positively
charged particles to generate negatively charged par-
ticles. The positive and negative particles represent
samples from the joint and factorial distributions, re-
spectively. The interactions between these particles re-
sult in a solution to the ICA problem. Specifically,
the positive particles must repel one another or a de-
generate solution will be obtained in which the demix-
ing function collapses the data to a single point. The
positive and negative particles must attract one an-
other to bring the joint and the factorial distributions
into alignment. The repelling and attractive forces be-
tween particles are proportional to sp—r, where d is
the distance between particles. The electric forces on
the particles are translated into forces on the param-
eters of the demixing function, and a solution corre-
sponds to the state in which the forces on particles
cancel. Technically, the integral of the electric field,
called the potential function, serves as the objective
function for the search. Consequently, the electric field
serves as the gradient of the objective function with
respect to each data point, and gradient-based meth-
ods can be applied to shift the data points—via the
demixing model parameters—downhill. If a good solu-
tion is found for the demixing model parameters, the
positive charges will end up superimposed on the neg-
ative charges, and the net charge distribution will be
uniformly zero throughout the mixing space.

Our approach is related to the idea of an informa-
tion force [18], where each data point is seen as re-
pelling each other, leading to a uniform joint distribu-
tion. However, our method is not restricted to finding
uniform distributions.

Although our approach seems elegant, the compu-
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Figure 1: Points sampled from the joint density
are positive particles and points sampled from the
marginal product are negative particles.

tational cost is high. Given M data points correspond-
ing to positive particles, and assuming we generate an
equal number of negative particles, the number of in-
teractions between particles is O(M?).

To make the computation tractable, we introduce
several approximations to decrease the number of in-
teractions. The approximations are based on a finite-
difference method in which we define IV equal sized in-
tervals on each dimensions of the demixed space, which
divides the space into DV hypercubes. The approxi-
mations we make are as follows. First, we reduce the
number of particles by canceling out positive and neg-
ative particles (randomly) within each hypercube. The
result is that each hypercube contains only positive or
negative particles, or none at all. Second, rather than
considering the interaction between pairs of individual
particles, we consider the interaction between an indi-
vidual particle and the mass effect of all particles in
a hypercube. Third, rather than considering the in-
teraction between a particle and the particles in every
hypercube, we consider only the interactions with the
neighboring hypercubes. This approximation is justi-
fied because the electric field decreases hyperbolically
with the distance; consequently, the neighboring hy-
percubes have a much greater effect on the field than
more distant hypercubes. We only compute the force
of the 2 D? nearest hypercubes on a particle.

Another Perspective on the Method

The electric-field method we are proposing could also
be viewed from a somewhat different perspective as
constructing local density approximations for the joint
and factorial distributions. The local density approx-
imation is a histogram, or a uniform bounded kernel,

47

estimate. That is, we estimate the joint density by
determining relative frequency of the demixed data in
each hypercube. By comparing the joint density (the
positive particles) with the factorial density (the nega-
tive particles), we can bring the two distributions into
agreement. Using a local-density approximation has
several potential problems. We briefly discuss these
problems and how our approach minimizes the prob-
lems.

The Curse of Dimensionality

The memory, computational, and/or sample re-
quirements of a local-density approximation grow ex-
ponentially in D, the number of mixture components.
The number of hypercubes required in our approach is
NP, and the amount of data required to populate the
hypercubes will also grow with NP1

Although we cannot altogether avoid the curse of
dimensionality, we can alleviate it to some degree based
on two observations. First, we have found empirically
that small N tend to work surprisingly well. Second,
we adopt a multiresolution approach in which we start
with a small V and then split into a larger number of
intervals as necessary.

Local Optima

Local-density approximations have two character-
istics that often result in local optima in a search
space. First, local density approximations often pro-
duce regions of uniform density; for example, with
the histogram approximation, all points within a hy-
percube are assigned the same density. Second, each
data point affects the density estimate in only a lim-
ited region of the space. As a result of these two
characteristics, gradient-based techniques tend to be-
come stuck in local optima, because shifting a data
point a small amount (resulting from a small adjust-
ment the demixing model parameters) will not affect
the density approximation, either locally—due to the
first characteristic—or nonlocally—due to the second
characteristic. We mitigate these problems to a de-
gree with the electric-field approach because the in-
teractions are not hypercube-to-hypercube, but rather,
hypercube-to-particle.

3. DETAILS OF THE APPROACH

The parameter N, the number of intervals into which
each dimension is partitioned, controls a bias-variance

Our method is not the only one that could suffer from the
curse of dimensionality. For example, in [7], an Nth order ap-
proximation of a D-dimensional distribution requires that NP
cumulants be calculated, resulting in an exponential slowing of
the algorithm with the dimensionality of the mixture space.



trade off. If N is large, the variance will be high and
the ICA solution will depend on the particular data
sample available; if N is small, the bias will be high,
and the algorithm will have difficulty accurately model-
ing the probabilities densities. Therefore, we begin the
search for the demixing model using a small N, N = 2,
and double N after a fixed number of iterations until
N reaches a fixed upper limit specified by the opti-
mal bandwidth A, of the histogram estimator, which
minimizes the mean integrated squared error. h, is ob-
tained from a bias-variance analysis for kernel density
estimators.

For each iteration of the electric-field method, the
D-dimensional grid that defines the hypercubes is
shifted on each dimension ¢ by a random value in
[—%, %], where h; is the hypercube edge length on
dimension i. This randomization has the important ef-
fect of smoothing estimated values of neighboring hy-
percubes.

In computing the distance between an individual
particle a and the set of particles in a hypercube, we
treat all particles in the hypercube as being located in
the same position—along the edge of the hypercube at
the point nearest to particle a.

As a demixing model we used a one-hidden-layer
neural network trained by back propagation. To pre-
vent the degenerate solution in which the demixing
function maps all data to a single point, and to make
the full grid, we rescale the grid to the range of mixing
model outputs.

The computational complexity of our algorithm is
O(log(M) + W) per data point, where O(W) > O(D?)
is the number of parameters in our demixing function.

4. EXPERIMENTS

4.1. Supergaussian Source Distribution

We begin with an experiment using five supergaussian
sources. Denoting the Gaussian density with mean p
and standard deviation o by G(z; u, o), the source den-
sities are given by

1 1

L G(2%,05,08), —G(x¥;0.1,1), —G(a¥;—0.5,0.5),

3x3 3x3 3x3

1 1 1 1
—G(23;-0.8,0.6), =G(23;0.5,0.4).

3x3 3x3

We used as a demixing model a linear neural net
trained with 1000 fixed examples and a learning rate
of 0.00001. N was fixed at 2; there was no doubling of
N. The network was trained for 100000 epochs, which
took about an hour on a PC. With a larger learning
rate, results are obtained faster but they are not as
exact.

48

The mixing matrix multiplied by the demixing is:

-0.0062 0.0054  -0.0005 0.2109 -0.0104
-0.1617  0.0339 0.0216 -0.0063  0.0093
-0.0079 -0.0108  0.2477 0.0018  0.0095
-0.0675 -0.1355 -0.0327 0.0067 -0.0631
-0.0273 -0.0361  -0.0055 -0.0033 0.2889

Perfect inversion of the mixing process is indicated by
an identity matrix, subject to a permutation and scal-
ing transformation. In such a matrix, each row will
contain one nonzero value and the remainder of values
will all be zero. As one can see, our result indicates
near ideal performance.

4.2. Subgaussian Source Distribution with Su-
pergaussian Modes

In this experiment, we used three sources, two of which
had two supergaussian modes, and one of which had
one supergaussian mode (top row of Figure 2). The
modes were defined as 3—1%—G(x%; u,0). The parame-
ters were the same as in the previous experiment but
we started with N = 8, which was doubled every 50000
epochs during the 200000 training epochs. Figure 2
shows the results.

Sources

Mixtures

Recovered Sources

i

Figure 2: For a three-dimensional linear mixture
projections of sources (1st line), mixtures (2nd line)
and sources recovered by our approach (3rd line) on
a two-dimensional plane are shown.



4.3. Subgaussian Source Distribution with

Gaussian Modes

In this experiment, we used four sources, three with
two modes and one with one mode, where each mode
was Gaussian. The source densities were:

1 1

1 2

1 1

1 3
ZG(m, 1.5,0.3) + ZG(.’L‘, 0,1), e

All parameters were as in the previous experiment but
the learning rate used was 0.01, and the simulation
was started with N = 2 and IV was doubled every 3000
epochs. We trained for 10000 epochs. The product of
the mixing and demixing matrices is:

0.4435 0.0066 0.0015 0.0024
-0.0099 -0.0098 -0.1497 -0.0027
0.0033 0.6142  0.0021 0.0035
-0.0031  0.0012 -0.0007  0.1503

4.4. Nonlinear Mixing

In this final experiment, we tried to recover sources
from two nonlinear mixtures. The two-dimensional
mixing function we used was: f; (2) = (2 + a)? and
f2(2) = Vz + a, where 2z is a complex variable denot-
ing the source datum, and a is the complex constant
3 + 3i. The same density was used for both sources:

1 1 1
~G(25;0,0.4) + 2 G(@:2,0.03) + 2G(x;~2,0.03)

€T3

We used a one-hidden-layer sigmoidal neural net with
50 hidden units as the demixing model. A set of 100000
training points was generated, of which 1000 was used
on each epoch of training. The learning rate was 0.01.
The simulation was started with N = 2 and N was
doubled every 100000 epochs. We trained for 500000
epochs. Figure 3 shows the sources, mixtures, and re-
covered sources. One cannot expect an exact inversion
of the mixing function, because nonlinear independent
component analysis has no unique solution unless the
form of the demixing function is restricted [12].

5. CONCLUSION

In this paper, we introduced a novel algorithm for ICA
that is based on an electric field analogy. The algo-
rithm can in principle handle arbitrary distributions for
the sources, nonlinear mixing functions, noisy observa-
tions, and an unequal number of source and mixture
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Mixtures

Sources Recovered Sources

» -

Figure 3: For two two-dimensional nonlinear mixing
functions (first line (z + a)? second line v/z + a) the
sources, mixtures and recovered sources are shown.
The mixing function is not completely inverted but
the sources are recovered recognizable.

components. The experiments showed that our algo-
rithm is not limited to special distributions and can
recover nonlinear mixed sources.

Our algorithm does not scale well with the dimen-
sionality of the source space, and hence it is most use-
ful for low-dimensional problems. If the separation can
be done stepwise, i.e., by treating all but one source
as noise or as a single second source, this limitation
is not a serious problem. Moreover, many real world
applications are in fact low dimensional, e.g., separa-
tion of a signal from noise, user/symbol/channel iden-
tification in telecommunications, or multi-tag radio-
frequency authorization for entering a building.
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