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ABSTRACT

The first part of this paper is concerned by the his-
tory of source separation. It include our comments and
those of a few other researchers on the development of
this new research field. The second part is focused
on recent developments of the separation in nonlinear
mixtures.

1. INTRODUCTION

First papers on source separation, and the genesis of
the concept itself, can be traced back to early 80’s
and consists of the work of Ans, Hérault and Jutten
[27, 3, 28], for modelling the biological problem of mo-
tion coding, and perhaps independently by Bar-Ness
et ol. in communications [5]. Although these results
have had a weak impact in the neural networks com-
munity, they got an increasing interest in the signal
processing community since 1989, especially in France
and Europe.

Many signal processing conferences and more re-
cently neural networks conferences, reserved sessions
devoted to the problem of source separation: for in-
stance, the French conference GRETSI since 1993, and
many other international conferences, NOLTA 95 (Las
Vegas, USA), ISCASS 96 (Atlanta, USA), EUSIPCO
96 (Trieste, Italia), NIPS 96 post-workshop (Denver,
USA), ESANN’97 (Bruges, Belgium), et cetera. Fi-
nally, the first international workshop on blind source
separation (BSS) and independent component analysis
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(ICA), ICA’99, brought together 130 researchers dur-
ing one week in Aussois in the French Alps. Many BSS
and ICA papers have been published in various jour-
nals, especially Signal Processing, Neural Networks,
Neural Computation and IEEE Transactions on Sig-
nal Processing.

First papers on BSS concerned instantaneous or
memoryless mixtures, but since 1991, source separation
in convolutive mixtures have raised a greater interest.
Issues in the separation of nonlinear mixtures remain
almost unaddressed until very recently.

Initially, we wanted to focus this paper on source
separation in nonlinear mixtures. However, the col-
legues from the HUT insisted on the importance of an
historical recall, especially for those of you who are
new in the field. The final idea was then to write an
informal part on the ”history” of BSS and ICA from
the genesis, followed by the recent developments con-
cerning nonlinear mixtures. The title of the paper may
recall that kind of movies where anything can happen,
but stay confident we tried to make the paper as easy
to read as possible.

2. HISTORICAL COMMENTS OF BSS AND
ICA

This part is a recall of the initial biological problem,
followed by few comments explaining the development
of BSS and ICA in the 80’s context. We hope that
this attempt will be neither too partial nor deadly bor-
ing. For a state-of-the-art, we recommend the papers
of Cardoso [12] or of Karhunen [34].

2.1. A biological problem

The problem came to light in our group, in 1982, dur-
ing an informal discussion with neuroscientists working
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Figure 1: A, B and C) Primary ending responses to a
joint movement imposed at 3 different constant veloc-
ities D) Frequency versus angular velocity E) Super-
imposition or three responses obtained with the same
angular velocity. Reprinted from Roll [48]

on motion coding by proprioceptive fibers.

The joint motion is due to muscle contraction, each
muscle spindle being controlled by the nervous system
via a motor ending. Conversely, the contraction is mea-
sured (and transmitted to the central nervous system)
on each muscle spindle by two types of (afferent) sen-
sory endings located in the tendons, and called primary
and secondary endings. One can easily observe the sen-
sory responses for a passive joint movement imposed at
constant velocity. Generally, the stability and the re-
producibility of the responses are estimated by the fre-
quencygram method, obtained by superposing several
sensory ending responses corresponding to the repeti-
tion of the same imposed movement (Fig. 1 and 2).
In the frequencygram, time is in abscissa and a spike
occuring at time ¢ is represented by one dot at time
t, ordinate of which is equal to the instantaneous fre-
quency, i.e. the inverse of the time interval between the
spike and the previous one. Thus, with this representa-
tion, the response means the instantaneous frequency.
Observations noted by Roll et al. [48] are the following:

e at constant joint position, the response of both
primary and secondary endings is constant. The
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instantaneous frequency increases as the muscle
is stretched i.e. as the joint is maintained at an-
other angle. The ratio (frequency/muscle stretch-
ing) is similar, on the average, on both endings.

e conversely, at constant velocity, the responses of
both endings differ. The response of primary end-
ings is characterized by an initial burst (see Fig.
1), and then, during the movement, a uniform
step associated to the uniform velocity motion, is
superimposed to the response associated to the
joint position. For the same angular motion (90
to 100), Fig. 1 shows that the step amplitude
increases with the motion velocity. Secondary
endings have similar responses, but with a low-
pass transient behavior: no initial burst, the fre-
quency decreases slowly as the motion finishes .
Nevertheless, during the motion, the frequency
increases with the velocity, but slower, on the av-
erage, than the instantaneous frequency recorded
on primary endings.

Then, curiously, although there are two types of af-
ferent endings, the messages of primary and secondary
endings are mixtures of information on joint position
and joint velocity.

We summarized these observations with the follow-
ing simplified model. If one except the transient be-
havior of primary endings, denoting p(t) the joint an-
gular position, v(t) = dp(t)/dt the joint angular veloc-
ity, f1(t) and f2(t) the instantaneous frequencies of one
primary ending and one secondary ending, respectively,
we proposed:

fi(t)
fa(t)

with a;; > 0 and a11 > a21, but where v(t), p(t) as well
as a;j,14,j = {1,2} are unknown.

allv(t) + alzp(t)
az1v(t) + axp(t)

It seemed impossible to recover joint position and
velocity from only the frequency sequence. However,
as remarked by Mc Closkey [40] in 1978: ”Clearly,
if spindle discharges are to be usefull for kinesthetic
sensations, the central nervous system must be able to
distinguish which part of the activity is attribuable to
muscle stretch and which part is caused by fusimotor
activity”. Moreover, we were convinced that, even with
imposed motions, even with close eyes, joint position
and joint velocity could be separated by the central
nervous system, although mixed in the primary and
secondary ending responses.

Denoting z(t) = (f1(t), f2(t))*, where T stands for
vector transposition, s(t) = (v(t),p(t))T, and A the



20+ A
g w0 o e,
g «m‘v.-w.aw 10 b
‘os: _/—
)
B _
/‘»:. s
B bty /
h /
e . //
; c 1 7
F,f;‘ dl.
P
é T 1Y0

angular velocity (deg./sec.)

- 28

Figure 2: A, B and C) Secondary ending responses to a
joint movement imposed at 3 different constant veloc-
ities D) Frequency versus angular velocity. Reprinted
from Roll [48]

matrix with entries a;;, we get the classic model of
instantaneous mixtures

z(t) = As(t), 1)

In the following subsection, we sketch the difficulties
for presenting the problem in 80’s, and which explains
the slow development of BSS up to 90’s.

2.2. Contextual difficulties
2.2.1. Independence

The first problem concerns statistical independence of
v(t) and p(t). In fact, due to the relation v(t) = dp(t)/dt,
people often argued that the two quantities are depen-
dent! In 1983-84, most peoples in signal processing
or neural networks communities, are not very familiar
with statistics. We tried to explain qualitatively that
v(t) and p(t) are statistically independent, since know-
ing v(t) gives no information on p(t), and conversely.
In other words, the distribution of p(t) does not depend
on the velocity value v, and conversely. Afterwards, to
overcome this difficulty, we presented the problem, out
of the biological context, but I remembered that there
also were confusions for many peoples between statis-
tical independence and linear independence (necessary
between the observations for insuring existence of the
mixture matrix inverse).

2.2.2. Second-order versus high-order statistics

This difficulty was also related to independence ver-
sus non correlation. Although the difference was em-
phasized in undergraduate probability lectures, in early
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80’s, researchers (except perhaps statisticians) assumed
basically Gaussian models of signals and noises, and
consequently merged non correlation and independence.
Explaining this difference becomes easier with the ris-
ing interest for high order statistics (HOS), which started
at about the same time: remember that the first work-
shop on HOS has been held in 1989 at Vail (Colorado,
USA). Moreover, for approximating statistical indepen-
dence, the first (heuristic) algorithm was based on the
cancellation of several high order moments, but was
not clearly derived from the cancellation of a unique
independence criterion.

2.2.8. Separable or not?

In 1983, Bienvenu and Kopp [9] had proved that the
eigenvectors of the spectral matrix span the signal sub-
space but cannot provide the sources. This last result is
based on algebraic arguments: the number of equations
was less than the number of parameters. The source
separation problem was then considered as impossible
to solve by signal processing researchers. When we pre-
sented a poster [28] in GRETSI’85, many peoples have
then been intrigued by the result, but their comments
were more or less incredulous: ”No, it is impossible”
or "It is mot impossible that it can work”. Later, in
1987, J.-L. Lacoume, although he thought (because of
[9]) separation was impossible, used high order statis-
tics (4-th order cumulants) for expressing the indepen-
dence assumption. His idea was to get more equations
(as Nikias and others did for other problems) than us-
ing only second order statistics, which could perhaps
overcome the above result [9]. And it worked [36]! He
remarked later relationships between source separation
and statistical independence, especially in developing a
Maximum Likelihood approach for source separation,
in which densities were approximated using a Gram-
Charlier expansion [26].

2.2.4. Neural network context

In 1985 and 1986, we presented this work in neural
networks conferences Cognitiva’85 and Snowbird 86.
These communications raised probably curiosity of a
few researchers. However, let us remember that, in
Cognitiva’85, LeCun et al. [37] published a new learn-
ing scheme for multi-layer neural networks, which be-
came very popular under the name ’backpropagation
algorithm’. During Snowbird’86, neural networks re-
searchers were more excited by Hopfield models, Koho-
nen self-organizing maps, multi-layer perceptrons (MLP)
and backpropagation. I remember that, during this
conference, Terry Sejnowski gave a very nice NETtalk
demo, illustrating MLP applications. Recently, he told



me that his interest for BSS and ICA began during this
meeting: ”Because I did not understand why your net-
work model could get the results that it did, new stu-
dents in my lab often were offered that question as a
research problem. Shaolin Li, a Chinese postdoc, made
some progress by combining beamforming with H-J [38].
This project was started around 1991.”

2.2.5. The Terminology

One should remark that the concepts ’blind source sep-
aration’ and ’independent component analysis’ did not
appear immediately. As an example, the first paper
(published in 1984, in French, in in Comptes Rendus
de I’Académie des Sciences de Paris [27], by J. Hérault
and B. Ans) as well as the GRETSI’85 communication
have so long and complex titles. Here is the transla-
tion: Detection of primary quantities in a composite
message with a neural computing architecture in unsu-
pervised learning! Then, in 1986, we spoke about the
’source discrimination’ and finally, we used ICA and
BSS since 1987.

2.3. Researcher mobilization

We believe that the success of the Signal Processing
papers [32, 20, 50] has been due to a surprising perfor-
mance with respect to the simplicity of the model and
of the algorithm. Half a day was sufficient to write and
test the algorithm. It has surprising performance, even
if it depends on the mixture hardness and suffers from
the lack of theory ... Many reasons to interest many
people.

2.8.1. A few pioneers

During GRETSI’85, we actually raised great interest of
L.Kopp (Thomson-Sintra company) who hired P.Comon
for working on this problem in 1988, among others in
antenna array processing. Comon tells: “Thomson ob-
tained a contract with the army, but nobody wanted
to address that problem because it seemed so strange
and unwonted. For the same reasons, I felt very at-
tracted, and discovered after several weeks the central
role played by cross cumulants. I could propose later an
analytical solution in the noiseless case in the presence
of two sources, and an iterative way to separate more
sources [15]. I defined only later, in 1990, an informa-
tion theoretic framework that led me to the formal def-
inition of ICA and to contrast functions, allowing the
computation of a solution in the presence of noise with
unknown distribution [17]. The works of Darmois and
Gassiat helped me in understanding the problem more
deeply (but I unfortunately discovered the nice paper of
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Donoho on scalar deconvolution only two years later).
1 also noticed that the optimization was to be performed
in the orthogonal group, and proposed a Jacobi-like al-
gorithm. The full paper appeared in a special issue in
1994 [18]. I also tackled multichannel convolutive miz-
tures [16], but proposed rather late a class of contrasts
without being able to establish the link to entropy crite-
ria [19]. Now I am more interested in underdetermined
mixtures (fewer sensors than sources).

In September 1987, J.-F. Cardoso visited our lab,
and we showed him a source separation demo with a
hardware demonstrator: a purely analog device based
on operational amplifiers, transistors, built in 1985,
and which is able to separate, in real time, two au-
dio sources mixed by potentiometers. Immediately,
P.Comon and J.-F. Cardoso became enthousiastic about
source separation, they met together later, in Vail (Col-
orado) in 1989. Cardoso explains: ”I became interested
in source separation in 1987 after hearing Yann LeCun
defend his thesis on back propagation: neural networks
were arriving on our radar screens and I decided to look
for applications of neural networks to signal processing
(SP). A quick search led me to the first papers of Jutten
and Hérault and I saw that the ICA model not only was
relevant to sensor array processing —a hard core topic
in SP— but was also bringing a fresh approach to it: the
possibility of blind array processing. I started hacking
fourth-order cumulant tensors in the spring of 1988 and
in 1989 I had a paper [11] at the first IEEE SP High
Order Statistics workshop in Vail, where I met Comon.
Since doing blind array processing was crazy enough,
I thought it would be safer to propose a simple alge-
braic method in which all the tensorial insanity would
be concealed (tensors can be ‘contracted’ into innocuous
matrices). [...] with JADE [14], we came out with a
method which optimizes a contrast, but does so using a
fast joint diagonalization algorithm. With the thesis of
Beate Laheld, I started investigating on-line separation
techniques and we were delighted to find that adaptive
separation could be made simpler, faster and more effi-
cient with ‘relative gradient’ algorithms [13] which offer
a uniform performance. The underlying concept here
is the so-called ‘equivariant’ nature of the ICA model.
To me, other important dates are linked to Pham and
Amari. In o beautiful paper [45], Pham showed us an
efficient quasi-maximum likelihood solution which not
only elucidates the role of non-linearity in source sep-
aration but also offers a simple technique to find good
non-linear functions. [...] Another important moment
for me has been when Amari joined the ICA band. I
was fascinated by his ‘information geometry’ and was
overjoyed that he brought in his insights and encouraged
me to explore the information geometry of ICA.”



2.3.2. French and European supports

BSS and ICA took advantage of the researcher interac-
tivity inside the French signal processing community.
Since 1967, the biennal conference GRETSI bring to-
gether signal (and now image) processing researchers,
now about six hundred people. Moreover, in 1989, a
research group, funding by the French National Center
for Research (CNRS) and Ministry of Research, has
been created, for organizing scientific (informal) meet-
ings in various topics (working groups). One of this
working group, focused on HOS and then on BSS and
ICA, has been supervised by J.-F. Cardoso from 1990
to 1997, who organized about 3 technical meetings per
year, with on the average 8 talks and 30 attendees.
This working group is still active, supervised now by
E. Moreau. Finally, the Working Group ATHOS (Ad-
vance Topics in High Order Statistics) coordinated by
P. Comon and funded by the European Community,
contributed to promote BSS and ICA in the signal pro-
cessing community. It is surprising that American re-
searchers addressed the problem very late. We believe,
and we have had some proofs in review reports of pa-
pers we submitted, that they considered the problem
was simply a special case of blind multichannel equal-
ization with trivial O-order Moving Average filters. Of
course, it is wrong, since in BSS and ICA the sources
are not imposed to be i.i.d., but we often forgot to em-
phasize on this point.

2.8.8. From neural PCA to ICA

Independently, E. Oja, J. Karhunen et al. came to
ICA and BSS by extending PCA neural networks which
have been popular at the end of 80’s. In a recent email,
Karhunen explains: ”However, we knew that PCA can
be realized more efficiently and accurately using stan-
dard numerical software, because the problem is linear.
Therefore, we wanted to study monlinear generaliza-
tions of PCA neural networks and learning rules. In
those problems, there usually does not exist any such ef-
ficient conventional solution. We were also looking for
nonlinear generalizations of PCA which could achieve
something more than standard PCA. We developed sev-
eral nonlinear neural extensions of linear PCA from
different starting points. These developments are sum-
marized in my two journal papers published in Neural
Networks in 1994 and 1995... However, a problem with
these extensions was that we had not at that time any
convincing applications showing that nonlinear PCA is
really useful and can provide something more than stan-
dard PCA. Independent component analysis is an ex-
tension of linear PCA, where uncorrelatedness assump-
tions are replaced by the stronger independence assump-
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tions while relazing the requirement of mutually orthog-
onal basis vectors. I was interested in that, especially
after seeing your 1991 papers published in Signal Pro-
cessing.”

2.83.4. From neural coding to ICA

The well known contribution of T. Bell and T. Se-
jnowsky [7] proposed some links between neural net-
works and entropy. However, the ideas which guided
T. Bell were closer of theoretical biology. As said Terry
Sejnowsky: ”Tony’s motivation was based on a deep in-
tuition that nature has used optimization principles to
evolve nervous systems that need to self-organize chan-
nels in dendrites (his PhD thesis in Computer Science
in Belgium) and in organizing the representations in
the visual system. Although his 1995 paper in Neural
Computation gets more citations, his 1997 paper in Vi-
sion Research is closer to his heart” [8]. In the same
spirit, J.-P. Nadal and N. Parga [41], from reflexions
on information theory and the concept of sparse neural
coding, introduced by Barlow at beginning of 60’s [4],
very early did interesting, although unrecognized, con-
tributions [41]. Nadal explains: ”In 1994, together with
Nestor Parga (Dep. de Fisica Teorica, UAM, Madrid),
I was working on information theoretic approaches to
sensory coding. At that time there were in the literature
papers modelling, e.g., the early visual system, making
use of two different ”basic principles” : redundancy re-
duction, as proposed by the biologist H. Barlow in the
60’s, and information mazimization (Infomax). Pre-
dictions for, e.g., the receptive fields of ganglion cells,
were quite similar. What we did with Nestor Parga [{1]
was to show that, under some conditions, Infomaz leads
to redundancy reduction. While writting the paper we
realized that, in terms of signal processing, redundancy
reduction is equivalent to ICA, and thus that we had
demonstrated that Infomaz is a proper cost function
for performing ICA/BSS. This is said in the conclu-
sion of our 94 paper. One year latter (1995) Bell and
Sejnowski proposed their algorithm precisely based on
Infomaz”.

2.8.5. RIKEN contributions

Last years, RIKEN institute in Japan, especially the
groups of Amari and Cichocki in Wako-shi near Tokyo,
have been very active in the field of BSS and ICA.
Moreover, many researchers, coming from the whole
world, have been invited or hired in their research groups
for working on these problems. A. Cichocki writes: "I
have started close and fruitful collaboration with Pro-
fessor Amari and also other researchers [...] from April
1995 when I joined Frontier Research Program Riken,



JAPAN and I would like to mention that I have learned
a lot form Professor Amari and His ideas.

Before this fruitful collaboration I have started to
study BSS/ICA since 1991 after reading several of your
influential papers, including your Doctor of Science The-
sis and works of your Ph.D students. When I was in
Germany in 1992-1994, at University Erlangen Nurem-
berg we have published several brief papers (Electron-
ics Letters 1992/94 IEEE Transaction on Circuits and
Systems) and also in our book (in April 1993) we pre-
sented neural network approach to BSS: Neural Net-
works for Optimization and Signal Processing by A. Ci-
chocki and R. Unbehauen (J. Wiley 1993 pp.461-471).”

And Shun-Ichi Amari adds : I knew the Jutten-
Hérault idea of source separation in late eighties, and
had interest in, but did not do any work on that subject.
It was in 1994 when Cichocki visited us and emphasized
the importance of the subject that I had again interest.
He showed me a number of papers in 1995, one of which
is Bell-Sejnowski paper. I was impressed by that one,
and thought that I could study more general mathemat-
ical aspects.

One of the results is the idea of natural gradient,
which I we proposed in our 1995 NIPS paper (Amari-
Cichocki-Yang, appeared in Proc. NIPS, 1996). The
algoritm itself was proposed by Cichocki earlier, and
also by Cardoso in 1995. But ours has a rigorous foun-
dation based on the Lie group invariance and Rieman-
nian metric derived therefrom.

From that on, I have carried out intensive research
on this interesting subject, in particular, its mathe-
matical foundations, in collaboration with Cichocki and
many others.

One is its foundation from the point of semipara-
metric statistical models and information geometry [2].
[--.] I also have studied efficiency and super-efficiency
of algorithms [1]. There are a number of other ideas,
but it is too much to state all of them”.

2.8.6. From statistics to ICA

Clearly, independence is related to probability and statis-
tics, and statisticians can bring a lot on source sepa-
ration. For instance, it appears that factorial analysis,
intensively studied in statistics in 50’s, is another way
to formalize ICA, especially the separability problem,
and that results were available for many years. The
Darmois’s results [22] have been brought to light by
P. Comon in 1991 [17], and more recently, researchers
used a few theorems published in the statistics book
[33] published in 1973! We finish by an anecdote, which
shows that probably it would have been possible to go
faster. In 1990, for administrative reasons, a PhD stu-
dent had to register in statistics instead signal process-
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ing post-graduate courses in Grenoble. But he wanted
absolutely to work on source separation, and D.T. Pham
accepted to supervise him. J. Hérault and myself gave a
short informal talk to D.T. Pham on source separation.
Three days after, he sent us a 5 or 6-page note in which
he sketched the Maximum Likelihood solution and em-
phasized on the relevance of score functions. Finally,
the nonlinear functions used in our first algorithm cor-
respond to a heuristic choice (fortunately robust), op-
timal for particular distributions. Since this date, he
bring nice contributions [45, 46, 44] to the problem.

3. SOURCE SEPARATION IN NONLINEAR
MIXTURES

When linear models fail, nonlinear models, because of
their better approximation capabilities, appear to be
powerfull tools for modeling practical situations. Ex-
amples of actual nonlinear systems include digital satel-
lite and microwave channels which are composed of a
linear filter followed by a memoryless nonlinear travel-
ling wave tube amplifier [25], magnetic recording chan-
nel, et cetera. Such systems are, therefore, of great
theoretical and practical interest.

While linear source separation in both the instan-
taneous and the convolutive case has been intensively
studied, extension and generalisation to nonlinear mod-
els has only been done in a very sparse way. It is amus-
ing to notice that this is not specific to source separa-
tion but seems to be a quite general observation.

3.1. Brief state-of-the-art

One may think that the interest in the separation of
nonlinear mixtures is recent, but this is not true. The
first reference to nonlinear mixtures is, at our best
knowledge, by Jutten [31] in 1987. He used soft non-
linear mixtures in order to assess the robustness and
the performance of the HJ algorithm. The mixtures
he used was those obtained in stereoscopic vision and
those obtained by a spherical coordinates transforma-
tion. He showed experimentally that the algorithm
converges to the linear approximation of the mixture
when this one is not too hard. Later, Burel [10] has
proposed a neural network based solution for known
nonlinearity depending on unknown parameters, how-
ever the cost function he used was very complex and
leads to a very complex algorithm.

Pajunen et al. [42] have addressed the problem
using self-organizing maps. This approach, although
simple and very attractive, requires a huge number of
neurons for good accuracy, and is restricted to sources
having probability density functions with bounded sup-
ports, and the more important is that it tends to mod-



ify the sources distribution and somehow have unifor-
mally distributed outputs. To overcome this difficullty,
Pajunen et al.[42] use a modified GTM (generative to-
pographic mapping) who is inspired itself by the SOM.
The modification consists in forcing the output to have
a specified, a priori known, source distribution.

Deco and Brauer [23] have also addressed the prob-
lem, considering a volume conservation condition on
the nonlinear transforms. This constraint leads to very
restrictive transforms. We also notice the contribution
of Yang et al. [58] who proposed algorithms for special
nonlinear mixtures, similar to post-nonlinear mixtures
which will be discussed infra, in which the nonlinearity
is not componentwise and whose inverse is supposed to
be approximated by a two-layer perceptron.

Most of the works cited above, even if it was based
on a good intuition, lacked theoritical justification. Ide-
ally, solid theory should be behind practice. It is well
known that, unlike the case of linear systems, prior
knowledge of the model is necessary for nonlinear sys-
tem identification [49]. So let us define the generic
model of nonlinear mixtures.

3.2. Generic model

In this paper we are only concerned by the instanta-
neous nonlinear mixtures (yes things are quite com-
plex in this case!). The problem of source separation in
general nonlinear instantaneous mixtures consists in re-

trieving unobserved sources s(t) = (s1(t), ..., sn(t))7,
by only observing a nonlinear mixture x(t):
x(t) = F(s(t)) (2)

where F is an unknown nonlinear one-to-one mapping.
This is done by constructing a nonlinear transform G
(separation structure) in order to isolate in each com-
ponent of the output vector y(t) = G(e(t)) the image
of one source. In other words, each component of the
output vector y(t) must depend on only one compo-
nent of the sources vector s(t). In the general case,
this image (dependency) can be a nonlinear function of
the source. In summary, the goal is to obtain:

yi(t) 3)

where ¢ is a permutation on {1,2,...,n}, and k; is
a function which represents a probable residual distor-
tion. It is clear that, without additional assumptions
on the sources, the problem is ill posed. A natural
assumption consists in supposing that the sources are
statistically independent, which means that the joint
density of the sources factorizes as the product of their
marginal densities:

kz(sa(z)(t))a t=1,2,...,n

p(s1,82,- -+ ,50) = p(s1)p(s2) - - P(8n) (4)
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s(t) — F | =z(t) —

G — y()

Figure 3: Instantaneous nonlinear mixture and its sep-
aration structure

Given this assumption, the role of the separation
structure is to transform the observations vector e(t)
to a vector y(t) with independent components.

Is the statistical independence assumption sufficient
to obtain a separation in the sense of equation (3) and
at what indeterminacies? The next section is concerned
by this question, but we can already affirm that the sep-
arability will be closely related to the structural con-
straints on the separation structure and the indetermi-
nacies will characterize the function k; of (3).

In the following, the dependency over time will be
ignored since the model is instantaneous and only spa-
tial properties are used, moreover we assume that all
the signals are real valued.

3.3. Separability

From the previous discussion, the separation structure
provides:

y=GoF(s)=H(s) (5)

Provided the independence assumption, separability con-
sists in determining the form of the transformations H
which leaves the components of s independent.

There is a strong relation between the objective of
source separation, as defined by equation (3), and the
statistical independence assumption. This comes from
the notion of trivial transformations.

A one-to-one mapping H is called trivial, if it trans-
forms any random random vector s with independent
components into a random vector with independent
components. The set of trivial transformations will be
denoted by 3.

Trivial transformations are then transformations con-
serving the independence property of any random vec-
tor. One can easily show that a one-to-one mapping H
is trivial if and only if it writes as:

(6)

where h; are arbitrary functions and ¢ is any permu-
tation over {1,2,...,n}.

This result establishes a link between the indepen-
dence assumption and the objective of source separa-
tion. In fact, it becomes clear that the source separa-
tion objective is, using the independence assumption,
to impose that the global transformation H = G o F is
trivial.

Hi(u17u27-" ,Un) = hi(ua(i))a t=1,2,...,n



However this is not possible without imposing ad-
ditional structural constraints on H, as we shall see in
the next section.

3.3.1. General results from factor analysis

In the general case, i.e. the transformation H has no
particular form, a well known statistical result shows
that the independence conservation constraint is not
strong enough to insure the separability in the sense of
equation (3). This result has been established, early in
the 50’s, by Darmois [21]' where he used a simple con-
structive method for decomposing any random vector
as a non trivial mapping of independent variables.

This result is negative, in the sense that it show the
existence of non trivial transformations H which "miz”
the variables while conserving their statistical indepen-
dence. Hence, for general nonlinear transformations
and without constraints on the transformations model,
source separation is simply impossible by only using the
statistical independence.

In the conclusion of [21], Darmois clearly states:
"These properties,[...], clarify the general problem of
factor analysis by showing the large indeterminacies it
presents as soon as one leaves the field, already very
wide, of linear diagrams.”

If you are still not convinced, here is a nice and
simple example:

1
— exp

2w

$2+ 2
pXY(x7y) = (_ Y

L), @we® @)
and consider the following nonlinear transform:

{

with 7 € Rt and 6 € [0, 2x[. This transform has a full
rank Jacobian matrix provided that r # 0:

X =rcosb

Y =rsiné (8)

cosf —rsinf
J = [ sinf rcosf |’ 9)
and the joint pdf of R and O is then:
LZe /2 (r,0) € RY x [0,27]
= 27r€ ? ?
pre(r:6) { 0 otherwise (10)

Relation (10) shows that the two random variables, R
and O are statistically independent. Other examples
can be found in the litterature (see for example Lukacs
[39]) or can be easily constructed.

I This paper can hardly be obtained and, at our knowledge, it
is available at The British Library.
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3.3.2. Specific model

The previous negative result is due to the fact that we
assume no constraints on the transformation #. Con-
straining the transformation # in a certain set of trans-
formation 9 can reduce these strong indeterminacies.

To characterize the indeterminacies for a specific
model £, one must solve the independence conservation
equation which writes as:

VE € My,

/ dFy,dFs, ---dF;, = / dF,, dFy, ---dF,, (11)
E H(E)
where 9, is a o-algebra on R™. Let P denote the set

;'p = {(F517FS27 st
H(s) has independent components}

,Fs,), such that IH € Q\(3NQ) :
(12)

This set contains all sources distributions for which
there exists a non trivial transformation H belonging
to the model £ and conserving the independence of the
8 components.

An ideal model will be such that 3 is empty and 3N
£ contains the identity as a unique element. However,
in general this is not fulfilled. We then say that source
separation is possible when the sources distribution is
in P, the complement of 9B, sources are then restored
up to a trivial transformation belonging to 3 N Q.

3.3.3. Example: Linear models

In the case of linear models, the transformation F is
linear and can be represented by an n x n matrix A,
the observed signals write then as e = As. Source
separation consists then in finding a matrix B such
that y = Be = H s has independent components.

The set of linear trivial transformations 3NL is the
set of matrices equal to the product of a permutation
and a diagonal matrix. By the Darmois-Skitovich the-
orem [33], the set P contains the distributions having
at least two Gaussian components. We then conclude
that source separation is possible whenever we have at
most one Gaussian source. Sources are then restored
up to a permutation and a diagonal matrix.

3.4. Separation of PNL mixtures

A postnonlinear model (PNL) consists in observing :
zi(t) = £i(O_ays;(t), i=1,...,n,  (13)
j=1

Figure 4 shows what this model looks like. One can see
that this model is a cascade of a linear mixture and a



componentwise nonlinearity, ¢.e. acts on each output
independently from the others. The nonlinear func-
tions (distortions) f; are supposed invertible. Besides

51(t) — 1 (t)
20— 3 (t)
() — o (®)

Figure 4: Postnonlinear mixture

its theoritical interest, this model, belonging to the L-
ZMNIL2 family, sticks perfectly for a lot of real world
applications. For instance, such models can be found
in sensors arrays [43], satellite and microwave commu-
nications [47], and in a lot of biological systems [35].

As discussed before, the most important thing when
dealing with nonlinear mixtures is the separability prob-
lem. First, we must think about the separation struc-
ture G which has as constraints:

1. Can invert the mixing system in the sense
of equation (3): this constraint is quite obvious
because that’s what we want!

2. Be as simple as possible: In fact we want to
reduce, in case we are successful, the residual dis-
tortions k; which are the blind spot of the inde-
pendence assumption.

By defining these two constraints, we have no other
choice that selecting for G the mirror structure of F
(Fig. 5). The total transformation y(t) = H(s(t))

o1 (t) — 41(1)
5 (t) g [ %0
on(t) Y

Figure 5: Separation structure

21, stands for Linear and ZMNL stands for Zero-Memory Non-
Linearity.
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G o F(s(t)) can then be written as:

yi(t) = Z bijg;(z;(t))

(14)

'7n7

where h; = g;o f; for j =1,2,... ,n. In this case, the
set £ consists in a L-ZMNL-L transformation.

One needs to know what are the trivial transforma-
tions belonging to the model, i. e. characterize the set
3N . This comes by solving the following system of
functional equations:

> biihi (O ajpur) = ki(uspy) i=1,...,n, (15)
j=1 k=1

where u € R™. It can easily be shown [55] that the so-
lutions of this functionnal equation are linear functions
when the matrix A has at least two non zero elements
per row or per column. In this case the matrix A is
called mixing enough.

The second, and the more difficult, step consists in
determining the set P8 of distributions for which H will
necessarily belongs to 3 N Q. This, unfortunately, has
not yet been fully established. What is shown is that,
under some conditions, distributions which vanish at
some points can be separable [55, 51].

The study of the separability of PNL mixtures gives
birth to a new problem in the factorization theory of
probability distributions [33], it consists in characteriz-
ing the distribution of the random variables X, Y which
admitt the following two representations:

n /4
X=fO aw)=> aw
i=1 i=1

n P
Y =93 bimi) = B
i=1 i=1

where both {z1,z32,... ,2,} and {y1,y2,... ,yp} arein-
dependent, f and g bijective. We conjecture that if X
and Y are not independent then f and g are neces-
sarily linear in their domain of definition (support of
E?:l a;x; and E?:l b,xl)

We first introduced the PNL model in [53], where
MLPs are used to invert the nonlinear functions f;. We
used the maximum likelihood as a cost function, where
we replaced the unknown sources pdfs by a Gram-
Charlier expansion up to the forth order. The obtained
results were quite good when the nonlinearities were
not too strong. In the case of strong nonlinearities, the

(16)



inversion of the nonlinearities was poor. We suspected
the approximation of the pdfs and in fact we were right.
By replacing this approximation by an online estima-
tion of the score functions developed in [52] we got good
results even in bad situations [55] (see for instance Fig.
6 and Fig. 7). Moreover, contrary to linear mixtures,
separation performance in nonlinear mixtures depends
on the estimation performance of score functions [51].

Figure 6: Observed mixture signals (left, center), and
their joint distribution (right)

Figure 7: Algorithm outputs (left, center), and their
joint distribution (right)

Finally, in ICA’99, we proposed a nonparametric al-
gorithm [54], the idea was to get rid of any parametrisa-
tion of the functions g;. The algorithm performes well,
and it is able to invert with equal performance either
hard saturations and hard cubic-like distortions?.

3.5. Extensions

In our work, we focused on PNL mixtures as a first step
towards understanding nonlinear mixtures and the new
problems they opened. Other nonlinear mixtures can
be considered. For instance, cascade of PNL mixtures
which model successive nonlinear signal amplification
and transmission. Convolutive PNL mixtures, in which
the mixing matrix consists of filters, and which can
model low-quality microphones. We can also consider
Wiener nonlinear systems which are the counterpart of
PNL models in the time-domain (Fig. 8) and also the
cascade of Wiener systems.

The class of Wiener systems is not only another
nice and mathematically attracting model, but also a
model found in various areas, such as biology: study

3An online demonstration of the algo-
rithm and Matlab code can be found at
http://www.atri.curtin.edu.au/csp/anisse/ss-demo/ or at
http://helio.inpg.fr/weblisl/personnes/jutten/index.html
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\ 4

h(z)

J

Figure 8: Wiener system

of the visual system [24], relation between the muscle
length and tension [29], industry: description of a dis-
tillation plant [6], sociology and psychology. See also
[30] and the references therein. Despite its interest, at
our knowledge, no blind procedure exists for the inver-
sion of such systems.

Wiener systems are very similar to PNL models,
in fact when the input s(¢) is an iid process, which
means that the samples are independent, one can con-
sider that we have an infinite number of independent
sources which are linearly mixed (filter h) and then dis-
torded by the ZMNL f. An efficient algorithm for the
inversion of such systems is proposed in [56] and [57].
However, the separability result (in infinite dimension)
is only conjectured.

In our opinion, the problem is somehow related to
channel coding. In fact, if we consider that the nonlin-
earity f represents the channel, and the filtered signal
h * s(t) a convolutive channel coding of s(t). Then, it
seems that this coding is sufficient to completely iden-
tify the channel and to blindly compensate its effect. Is
the redundacy introduced by the filter sufficient? What
is the minimum required redundacy? These questions
have presently no answer. The funnier thing is that this
h-convolutive coding is done, in almost all situations,
by mother nature itself. This remark also holds for
PNL models, where the coding is done by the mixing
matrix A.

4. CONCLUSION

In this paper, we recalled the genesis of source separa-
tion in our group as well as in a few others. We are
conscious that this part does only consider a few devel-
opments of BSS and ICA. Especially, advances for con-
volutive mixtures (due to Yellin and Weinstein, Nguyen
Thi et al., Broman and Lindgren, Loubaton et al., et
cetera) have not been touched, despite their importance
in communications. The second part pointed out re-
cent results, mainly developed in Taleb’s Ph.D [51], on
nonlinear mixtures. This opens large perspectives for
investigating the problem of ICA and BSS from a more
general point of view: other separable nonlinear mix-
tures, both convolutive and nonlinear mixtures, ICA
for image and data analysis, etc. and for applying the
methods in many domains: communications, medicine,



etc.

Let us conclude with J.-F. Cardoso: "It is amaz-

ing to see how much attention the deceptively simple
model of ICA as attracted over more than 10 years and
to realize that the field is still open to investigation”.
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