Induction of Node Label Controlled Graph Grammar Rules

Hendrik Blockeel

HENDRIK.BLOCKEELQCS.KULEUVEN.BE

Department of Computer Science, Katholiecke Universiteit Leuven
& Leiden Institute of Advanced Computer Science, Leiden University

Siegfried Nijssen

SIEGFRIED.NIJSSEN@QCS.KULEUVEN.BE

Department of Computer Science, Katholieke Universiteit Leuven

Abstract

Algorithms for inducing graph grammars
from sets of graphs have been proposed be-
fore. An important class of such algorithms
are those based on the Subdue graph min-
ing system. But the rules learned by Subdue
and its derivatives do not fit easily in any of
the well-studied graph grammars formalisms.
In this paper, we discuss how Subdue-like al-
gorithms could be made to work in the con-
text of NLC grammars, an important class
of node replacement graph grammars. More
specifically, we show how, given a set of oc-
currences of a subgraph, an NLC grammar
rule can be induced such that the given oc-
currences could have been generated by it.

1. Introduction

Grammar induction is a well-studied area in machine
learning. In most cases, the grammars that are consid-
ered define languages over strings, but languages over
trees or over graphs have also been considered. In this
text, we focus specifically on graph grammars.

There is a large body of work on graph grammars, but
much less on learning such grammars. Perhaps the
most widely known work in this area is that by Jonyer
et al. (2004), who developed an algorithm for graph
grammar induction that builds on Cook and Holder’s
(1994) Subdue approach for learning from graphs. One
could say that Jonyer et al.’s approach is a practical
one, which has led to interesting results, but where the
link with existing theory on graph grammars is not al-
ways clear. This paper presents a first step towards a

Appearing in the 6 International Workshop on Mining
and Learning with Graphs, Helsinki, Finland, 2008.

similar algorithm that will induce node label controlled
graph grammars (NLC grammars for short) (Engelfriet
& Rozenberg, 1990), a well-studied subclass of graph
grammars. Specifically, we adapt the main operator
used by Subdue (replacing a frequently occurring sub-
graph by a non-terminal node) so that it can be used
for learning correct NLC grammars. In this text we
consecutively describe NLC grammars, discuss Sub-
due and its limitations, and present our own results.

2. NLC graph grammars

Graph grammars are often divided in two categories:
node replacement grammars, where the grammar con-
sists of rules that define how a single (non-terminal)
node can be replaced by a subgraph; and hyperedge
replacement grammars, with rules showing how a hy-
peredge can be replaced by a graph. Node replacement
grammars come in a number of variants, among which
NLC grammars are the simplest.

In the following we consider undirected, node-labeled,
graphs. Abusing notation somewhat, we will write
z € G, {z,y} € G, S C G to denote z € Nodes(G),
{z,y} € FEdges(G), and Nodes(S) C Nodes(G) A
Edges(S) C Edges(G). We define the neighborhood
of S'in G as Nbh(S,G) = {yl{z,y} e GAz e SAYy &
St.

A rewrite rule in a node replacement grammar is of
the form N — S/E, where N is a node label, S is a
graph, and F is an embedding rule. Applying the rule
to a graph G consists of taking a node x with label
N, removing all its incident edges, replacing the node
with S, and reconnecting S to the nodes originally
connected to N according to the rules specified in E.
(The embedding rule F does not occur in string gram-
mars; it is needed here because, contrary to strings,
when a node is replaced by a graph, the graph could
be reconnected to the rest of the graph in many ways.)

Induction of NLC graph grammar rules

In the case of NLC grammars, E is a set of couples
(a,b) where a and b are node labels. (a,b) € E indi-
cates that each node of S with label a will be connected
to each node with label b in the neighborhood of z.

3. Subdue

Starting from a graph G, Subdue repeatedly performs
the following operation: find a large subgraph S that
occurs often in G, and replace each occurrence! S; of
S by a single node z; with a new label N, connecting
all edges formerly incident to S; to x;, and remember-
ing that any node labeled N actually stands for that
subgraph (i.e., a rewrite rule N — S is stored). Let
us denote the resulting graph with Gg/y. S is chosen
such that it leads to maximal compression, i.e., Gg/n
is as small as possible. The same operator is next ap-
plied to Gg/n, and this is continued until no further
compression is possible.

Subdue does not learn an embedding rule. As a con-
sequence, the graph compression is lossy: after replac-
ing each occurrence of S with a single node labeled
Ng, the original graph cannot be recovered by apply-
ing the rewrite rule (the information about how S was
connected to the rest of the graph is lost). The ques-
tion we address here is how to learn rules of the form
N — S/E, with E a valid embedding rule, thus achiev-
ing lossless compression.

4. Learning NLC grammar rules

The compression achieved by the Subdue operator is
roughly |S| - f(S) with |S]| the size of S and f(S5) its
frequency (number of occurrences). Here, we want to
find a rule of the form N — S/F such that |S|- f/(S) is
maximal, with f/(S) the number of occurrences where
S is embedded in the graph consistently with E. We
want to find F such that f/(S) is maximal.

Clearly, f'(S) < f(S). f'(S) < f(S) may hold for
three reasons. (1) An occurrence of a single subgraph
S in G may be such that no F exists such that this
occurrence of S in G could have been generated by a
rule of the form N — S/E. (2) If we have two occur-
rences S1 and So, for each of which embedding rules E
and Fs exist, there may not exist a single ' such that
both S; and S can be embedded in the graph accord-
ing to the single E. (3) When two occurrences touch,?
replacing one occurrence with N affects the neighbor-
hood of the other occurrence, possibly destroying its

Non-overlapping occurrences are assumed here.
2We say that two subgraphs touch if they overlap or one
graph overlaps with the other’s neighborhood.

c a_ b c c a_ b c
a b b a
d ¢ N d ¢ N
d c c d d C
N—> / {(b,c)}
a b

Figure 1. Left: an “a-b-c-d cycle” (indicated in bold) oc-
curs three times in the graph, but only twice in such a
way that it could have been generated from a non-terminal
node following a particular embedding rule. Right: a com-
pressed version of the graph together with the NLC graph
grammar rule that generates the original graph from it.

embeddability.

We call a set of occurrences {Si,...,S;} in G of a
graph S compatible if an embedding rule F exists such
that repeatedly applying the rule N — S/E to Gg/n
will again yield G. In general, when the set of all
occurrences of S in G is not compatible, f'(S) < f(5).

For example: the middle structure in Figure 1 is such
that no embedding rule exists such that S could be
generated from a non-terminal node (the node with
label a should be connected to all nodes with label ¢
in the neighborhood of S). Both other occurrences,
though, are compatible with each other.

4.1. Possible embedding rules for one
subgraph

Problem: Given a subgraph S of a graph G, what
are the possible embedding rules E such that G could
have been obtained from some graph F' by applying
the NLC grammar rule N — S/E?

Solution: FE is a set of couples (a,b) with a and b
labels. Recall that when (a,b) € FE, each node = €
S with label a will be connected to each node y €
Nbh(N) with label b, when applying N — S/E. Let
L denote the set of all possible node labels.

We will define an inset I, which is the set of all (a,b)
couples that must be in E, and an outset O, which is
the set of all (a,b) couples that cannot possibly be in
E. I is then a lower approximation of £, and L? — O
an upper approximation. Any F such that I C F C
L? — O will be a possible embedding rule.

In order to define I and O, we first need a lower ap-
proximation of Nbh(N). Define NI, the node-inset, as
the set of nodes in G — S that must have been part of
Nbh(N). Clearly, NI D Nbh(S). In fact, it is possible
to show (we omit the proof here) that NI = Nbh(S).

Induction of NLC graph grammar rules

Whenever a node x € S is connected to a node y €
G— S, we know that (I(z),l(y)) € E, with I(-) denoting
a node’s label. Hence, for each (z,y) such that x € S,
y € NI, and (z,y) € G, we have: (I(z),l(y)) € I.

I={((x),l(y)|lx e SAy € NI A (z,y) € G}.

Similarly, whenever we have an € S and y € NI
where (z,y) € G, we know that (I(z),l(y)) € E. In-
deed, if x and y are not connected, although y was in
Nbh(N), then (I(z),!(y)) must not have been in E.

O ={(l(z),l(y))|lxr € SAy € NI A (z,y) & G}.

If INO # 0, then no embedding rule E exists such
that a rule N — S/F could have generated S.

4.2. Possible embedding rules for a set of
occurrences of a subgraph

Let S;, 1 <1i < n, be a set of isomorphic graphs, all of
which are mutually non-touching subgraphs of a graph
G. Let I; and O; be the inset and outset of S;.

If there exists an embedding rule E compatible with
S; and with S}, it must hold that I; C E C L? — O;
aswellas [; C FE C L2 — Oj;, and hence

LUIL; CECL?*—(0,U0;).

Thus, extending the notion of inset and outset to sets
of graphs (instead of single graphs), we can say that
the inset (outset) of a set of subgraphs is the union of
the insets (outsets) of its elements.

A set of non-touching occurrences is compatible if and
only if its inset and outset do not overlap.

When two subgraphs touch, replacing one of them with
a non-terminal node may destroy the other one or af-
fect its neighborhood. Correctness of our algorithm is
only guaranteed for non-touching subgraphs.

4.3. Maximal compatible subset

Problem: Given a set of isomorphic subgraphs, find
a maximal compatible subset of non-touching sub-
graphs in it, i.e., a maximal subset for which a single
embedding rule F exists. (Note: f’(S) will be equal
to the cardinality of this subset.)

Solution: First note that a set of non-touching sub-
graphs {S1,...,S;} is compatible if and only if all its
elements are pairwise compatible, i.e., Vi, j : {S;,5;}
is compatible. Indeed, {Si,...,Sk} is compatible
iff (U; i) N (U;0;) = 0. Because of distributivity,

(U; L) N (U; 05) = U,;(1i N Oy). This equals 0 if and
only if Vi, j : I, N O; = 0.

For any set of subgraphs {Si,...,Sk}, we can con-
struct a “compatibility graph” with the S; as nodes,
in which an edge {S;, S;} indicates that S, and S; do
not touch and are pairwise compatible. Our problem
now reduces to finding a maximal clique in this graph.
Kuramochi and Karypis (2004) use a similar approach
to compute subgraph supports in a frequent subgraph
miner.

While the maximal clique finding problem is NP-
complete, Kuramochi and Karypis found this approach
to be feasible in practice. Since, for a given graph
mining problem, our compatibility graph is always a
subgraph of Kuramochi and Karypis’s graph (in their
graph, two nodes are connected if they do not over-
lap, which is a strictly weaker condition than ours),
we expect our approach to be at least as feasible. This
expectation remains to be validated empirically.

5. Conclusions

We have studied the following problem: given a set
of occurrences of a subgraph S in a graph G, find
a maximal subset of non-touching occurrences that
could have been generated by a single NLC grammar
rule N — S/E (identifying F at the same time). We
have proposed an algorithmic solution for this prob-
lem. Embedded in a Subdue-like system, this algo-
rithm paves the way towards lossless graph compres-
sion using NLC grammar rules, and towards induction
of NLC grammars.

Practical consequences of using this algorithm (such as
its effect on efficiency) remain to be investigated. The
question of how to find compatible touching subgraphs
also remains open. Finally, we note that NLC gram-
mars are the simplest of a series of graph grammars,
of which the so-called edNCE grammars (which have
more powerful embedding rules) are the most power-
ful. Those edNCE grammars still resemble NLC gram-
mars quite well in structure, so it makes sense to study
whether the proposed approach can be generalized to-
wards learning edNCE grammars.

Acknowledgments

H.B. is a post-doctoral fellow of the Research Foun-
dation - Flanders (FWO-Vlaanderen). S.N. was sup-
ported by the EU FET IST project “Inductive Query-
ing”, contract number FP6-516169. Work also sup-
ported by Vidi project “Annotated Graph Mining” of
the Dutch NWO and Project G.0306.07 ” Graph logic:

Induction of NLC graph grammar rules

representation, inference and learning” funded by the
Research Foundation - Flanders.

References

Cook, D. J., & Holder, L. B. (1994). Substructure dis-
covery using minimum description length and back-
ground knowledge. Journal of Artificial Intelligence
Research, 1, 231-255.

Engelfriet, J., & Rozenberg, G. (1990). Graph gram-
mars based on node rewriting: An introduction
to nlc graph grammars. Graph-Grammars and
Their Application to Computer Science (pp. 12-23).
Springer-Verlag.

Jonyer, 1., Holder, L., & Cook, D. (2004). MDL-based
context-free graph grammar induction and applica-
tions. International Journal on Artificial Intelli-
gence Tools, 13, 65-79.

Kuramochi, M., & Karypis, G. (2004). Finding fre-
quent patterns in a large sparse graph. Proceed-
ings of the Fourth SIAM International Conference
on Data Mining.

