
Parameter Learning in Probabilistic Databases:
A Least Squares Approach

Bernd Gutmann Bernd.Gutmann@cs.kuleuven.be
Angelika Kimmig Angelika.Kimmig@cs.kuleuven.be
Luc De Raedt Luc.DeRaedt@cs.kuleuven.be

Dept. of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, POBox 2402, BE-3001 Hev-
erlee, Belgium

Kristian Kersting kristian.kersting@iais.fraunhofer.de

Fraunhofer IAIS, Schloß Birlinghoven, 53754 Sankt Augustin, Germany

Keywords: Learning, Graphs, Probabilistic Databases, Logic

Abstract

Probabilistic databases compute the success
probabilities of queries. We introduce the
problem of learning the parameters of the
probabilistic database ProbLog. Given the
observed success probabilities of a set of
queries, we compute the probabilities at-
tached to facts that have a low approxima-
tion error on the training data as well as
on unseen examples. Assuming Gaussian er-
ror terms on the observed success probabil-
ities, this naturally leads to a least squares
optimization problem. Experiments on real
world data show the usefulness and effective-
ness of this least squares calibration of prob-
abilistic databases.

1. Introduction

The statistical relational learning community has de-
voted a lot of attention to learning both the structure
and parameters of probabilistic logics, cf. (Getoor &
Taskar, 2007; De Raedt et al., 2008), but so far seems
to have devoted little attention to the learning of prob-
abilistic database formalisms. Probabilistic databases
(Dalvi & Suciu, 2004; De Raedt et al., 2007) asso-
ciate probabilities to facts, indicating the probabilities
with which the facts hold. This information is then
used to define and compute the success probability of
queries or derived facts or tuples. Because probabilis-

Appearing in the 6 th International Workshop on Mining
and Learning with Graphs, Helsinki, Finland, 2008.

tic databases do not constitute a generative model,
it has – so far – been unclear as how to learn such
databases. In this paper, we introduce the problem
of learning the parameters of probabilistic databases
from a set of queries together with their target prob-
abilities. The approach is incorporated in the prob-
abilistic database ProbLog (De Raedt et al., 2007),
though it can easily be integrated in other probabilis-
tic databases as well. ProbLog has been designed to
support life scientists that mine a large network of bio-
logical entities in interactive querying sessions and we
report on some experiments in this domain that vali-
date the approach.

2. ProbLog

ProbLog is a simple probabilistic extension of Prolog
introduced in (De Raedt et al., 2007). A ProbLog pro-
gram consists – as Prolog – of a set of definite clauses.
However, in ProbLog every fact ci is labeled with the
probability pi that it is true, and those probabilities
are assumed to be mutually independent.

For ease of illustration, we will consider probabilistic
graphs encoded in ProbLog in the following, but the
entire discussion carries over to arbitrary ProbLog pro-
grams. Figure 1(a) shows a small example that can be
encoded in ProbLog as follows:

0.8 : edge(a, c). 0.7 : edge(a, b).
0.6 : edge(b, c). 0.9 : edge(c, d).

Such a probabilistic graph can be used to sample sub-
graphs by tossing a biased coin for each edge. The cor-
responding ProbLog program T = {p1 : c1, · · · , pn :
cn} therefore defines a probability distribution over

Parameter Learning in Probabilistic Databases

subgraphs L ⊆ LT = {c1, · · · , cn} in the following
way:

P (L|T) =
∏

ci∈L
pi

∏
ci∈LT \L

(1− pi).

It is straightforward to add background knowledge in
the form of Prolog clauses, say, the definition of a path
by combining edges. We can then ask for the probabil-
ity that there exists e.g. a path between nodes a and
c in our probabilistic graph, i.e. the probability that a
randomly sampled subgraph contains the edge from a
to c, or the path from a to c via b (or both of them).

a

b

0.7 c
0.8

0.6

d
0.9

(a)

ac
ab

1

bc

0

(b)

Figure 1. Probabilistic graph and BDD for query path(a,c).

Formally, the success probability Ps(q|T) of a query q
in a ProbLog program T is defined as

Ps(q|T) =
∑

L⊆LT

P (q|L) · P (L|T) , (1)

where P (q|L) = 1 if there exists a θ such that L |= qθ,
and P (q|L) = 0 otherwise. In other words, the success
probability of query q corresponds to the probability
that the query q is provable in a randomly sampled
logic program.

Due to simultaneous presence of multiple proofs
(paths) in sampled programs (graphs), evaluating the
success probability of ProbLog queries is computation-
ally hard. In (De Raedt et al., 2007), an approximation
algorithm is proposed to tackle this problem by em-
ploying a reduction to the computation of the probabil-
ity of a monotone DNF formula, an NP-complete prob-
lem. The approximative inference engine performs an
iterative deepening search for proofs and also relies on
Binary Decision Diagrams (BDDs) (Bryant, 1986), cf.
Figure 1(b).

3. Parameter Learning

The semantics of ProbLog does not provide a gener-
ative model for sampling queries (e.g. paths between
given nodes). We therefore cannot directly apply stan-
dard maximum likelihood techniques for parameter es-
timation based on the EM algorithm as is usually done
for statistical relational learning models (Getoor &
Taskar, 2007). We therefore consider parameter learn-
ing for ProbLog as a function optimization problem,

where we seek a set of parameters for our program that
approximates actual query probabilities well, yielding:

Definition 1 (ProbLog Parameter Learning)
Given a set of training examples {qi, p̃i}K

i=1, K > 0,
where each qi ∈ H is a logical query with success
probability p̃i, find a function h : H → [0, 1] with
low approximation error on the training data as well
as on unseen examples. H comprises all parameter
assigments for a given logical program T .

The example space considered here thus comprises log-
ical queries, and we want to approximate a real-valued
function (a probability) given a set of training exam-
ples together with their desired outcome. The error
function that we minimize is the mean squared error:

MSE(T) =
1
K

∑
1≤i≤K

(
Ps(qi|T)− p̃i

)2
. (2)

It is easy to show that minimizing the squared error in
this case corresponds to finding a maximum likelihood
hypothesis, provided that for each training example
(qi, p̃i), a Gaussian error is included in p̃i, i.e. p̃i =
p(qi) + ei, with p(qi) the actual probability of query
qi and ei drawn independently from a Gaussian with
mean zero.

Gradient descent is a standard way of minimizing a
given error function. We now derive the gradient of
the MSE. Applying the sum and chain rule to Eq. (2)
yields the partial derivative ∂MSE(T)/∂pj =

2
K

∑
1≤i≤K

(
Ps(qi|T)− p̃i

)︸ ︷︷ ︸
Part 1

· ∂ Ps(qi|T)
∂pj︸ ︷︷ ︸

Part 2

. (3)

Part 1 can be calculated by a ProbLog inference call
computing (1). It does not depend on j and has to
be calculated only once in every iteration of a gradient
descent algorithm. Part 2 is calculated as following

∂Ps(qi|T)
∂pj

=
∑

S⊆LT

S|=qi

δjS

∏
cx∈S
x6=j

px

∏
cx∈LT \S

x6=j

(1− px) , (4)

where δjS := 1 if cj ∈ S and δjS := −1 if cj ∈ LT \S. It
is derived by first deriving the gradient ∂P (S|T)/∂pj

for a fixed subset S ⊆ LT of clauses, which is straight-
forward, and then summing over all subsets S where
qi can be proven.

All pj values are probabilities. To maintain this
property during gradient descent, we reparameterize
the search space to arbitrary real numbers and ex-
press each pj ∈]0, 1[in terms of the sigmoid function
pj = σ(aj) := 1/(1 + exp(−aj)) applied to aj ∈ R.

Parameter Learning in Probabilistic Databases

This technique has also been used for Bayesian net-
works and in particular for sigmoid belief networks
(Saul et al., 1996). We can derive the partial derivative
∂Ps(qi|T)/∂aj in the same way as (4) but we have to
apply the chain rule one more time due to the σ func-
tion

σ(aj) · (1− σ(aj)) ·
∑

S⊆LT

L|=qi

δjS

∏
cx∈S
x6=j

σ(ax)
∏

cx∈LT \S
x6=j

(1− σ(ax)).

We also have to replace every pj in Eq. (1) by σ(pj).
Going over all subprograms S in the last equation is
infeasible, but by traversing the BDDs corresponding
to the query qi, the value of the gradient can be cal-
culated efficiently.

Given the gradient (3), we can minimize the MSE by
running a standard gradient descent algorithm. We
initialize the parameters aj of the ProbLog program
T randomly, calculate in every iteration the gradient,
and add the negative gradient multiplied by the learn-
ing rate η. A small η will lead to a slow convergence
whereas larger values can provoke oscillation.

4. Experiments

We implemented the gradient descent algorithm in
Prolog (Yap-5.1.3) and used CUDD1 for BDD oper-
ations. Since this is ongoing work, we primarily try to
answer the question: does the gradient descent mini-
mize the MSE?

As our test graph G, we used a real biological graph
around 3 random Alzheimer genes, with 45 nodes and
88 edges. The graph was obtained by taking the union
of subgraphs of radius 3 from each gene, producing
weights as described in (Sevon et al., 2006).

We randomly sampled 100 node pairs in the graph
and calculated the probability that there exists a path
between them using approximative ProbLog inference.
We split the set in 5 folds of 20 query-probability-tuple
each. Then we used 4 folds as training set and the re-
maining fold as test set. We initialized the parameters
aj randomly but kept the seed constant for succeeding
experiments. The learning rate η was set to 80, the size
of the training set, which simply retracts the scaling
induced by the 1/K factor of the MSE. We found that
this value yields a good trade-off between convergence
speed and tendency to oscillate.

Figure 2 shows the learning curve for the test set. After
50 iterations, the MSE is 0.00016 ± 0.00001 on the
training set and 0.00107±0.00065 on the test set. This
answers our question affirmatively.

1http://vlsi.colorado.edu/∼fabio/CUDD

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 10 20 30 40 50

M
S

E

Iteration

MSE on test set

Figure 2. Learning curve on the test set; the error bars
indicate the standard deviation over the 5 folds.

5. Conclusions

We have introduced an approach to learning the
parameters of the probabilistic database ProbLog
and successfully shown it at work on a real bio-
logical application. Interesting directions for future
research include conjugate gradient techniques and
regularization-based cost functions. Those enable do-
main experts to successively refine probabilities of a
database by stating training examples.

Acknowledgments AK, BG are supported by the
Research Foundation-Flanders (FWO-Vlaanderen),
KK by a Fraunhofer ATTRACT fellowship.

References

Bryant, R. E. (1986). Graph-based algorithms for
boolean function manipulation. IEEE Trans. Com-
puters, 35, 677–691.

Dalvi, N. N., & Suciu, D. (2004). Efficient query eval-
uation on probabilistic databases. VLDB (pp. 864–
875).

De Raedt, L., Frasconi, P., Kersting, K., & Muggle-
ton, S. (Eds.). (2008). Probabilistic inductive logic
programming - theory and applications, vol. 4911 of
LNAI. Springer-Verlag.

De Raedt, L., Kimmig, A., & Toivonen, H. (2007).
ProbLog: A probabilistic Prolog and its application
in link discovery. IJCAI (pp. 2462–2467).

Getoor, L., & Taskar, B. (Eds.). (2007). Statistical
relational learning. The MIT press.

Saul, L., Jaakkola, T., & Jordan, M. (1996). Mean
field theory for sigmoid belief networks. JAIR, 4,
61–76.

Sevon, P., Eronen, L., Hintsanen, P., Kulovesi, K.,
& Toivonen, H. (2006). Link discovery in graphs
derived from biological databases. Proceedings 3rd
International Workshop on Data Integration in the
Life Sciences (pp. 35–49). Springer.

