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Abstract

We propose an efficient discriminative train-
ing method for generative models under su-
pervised learning. In our setting, fully ob-
served instances are given as training exam-
ples, together with a specification of vari-
ables of interest for prediction. We formu-
late the training as a convex programming
problem, incorporating the SVM-type large
margin constraints to favor parameters under
which the maximum a posteriori (MAP) esti-
mates of the prediction variables, conditioned
on the rest, are close to their true values given
in the training instances. The resulting opti-
mization problem is, however, more complex
than its quadratic programming (QP) coun-
terpart resulting from the SVM-type training
of conditional models, because of the pres-
ence of non-linear constraints on the param-
eters. We present an efficient optimization
method, which combines several techniques,
namely, a data-dependent reparametrization
of dual variables, restricted simplicial de-
composition, and the proximal point algo-
rithm. Our method extends the one for solv-
ing the aforementioned QP counterpart, pro-
posed earlier by some of the authors.

1. Overview
We consider discriminative training of parameters for

generative models with directed acyclic graphs and
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with discrete-valued variables. We assume a super-
vised learning setting, in which fully observed in-
stances are given as training examples, together with
a specification of variables of interest to prediction.
These will be called hidden variables and they may
vary from instance to instance. As to which variables
are considered as hidden, it is sometimes naturally de-
termined by the model or task, as in the case of a
hidden Markov model (HMM) or a classification task.
However, the selection can also be made only for the
purpose of discriminative training: for example, in a
way emulating the idea of the “coding technique” or
“pseudo-likelihood” of Besag (1974), we can select a
subset of nodes of a complex Bayesian network (BN)
such that their edges cover many parts of the graph,
and given the rest of the nodes, the inference on the
graph is relatively easy. In this work we focus primar-
ily on the algorithmic aspects of efficient training.

We take the log-probabilities associated with the edges
of the generative model as model parameters. (They
can be shared across edges as in HMM and relational
Bayesian networks.) We formulate the discriminative
training problem as a convex programming problem.
Its objective function has KL divergence terms to con-
trol the degree of deviation of the model parameters
from certain given distributions, and penalty terms for
the SVM-type margin violation to favor parameters
under which the maximum a posteriori (MAP) esti-
mates of the hidden variables, conditioned on the rest,
are close to their true values given in the training in-
stances. Large margin type of training criteria have
been used for conditional models in recent structured
prediction works (e.g., (Collins, 2002; Altun et al.,
2003; Taskar et al., 2004)); there, the resulting opti-
mization problems are primarily convex quadratic pro-
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gramming (QP) problems with a large number of linear
constraints due to the margin penalty. Here, we con-
sider optimization problems that can be more complex
and have non-linear constraints on the parameters, in
addition to the margin constraints.

We present an efficient optimization method; its idea
applies to solving a class of problems resulting from the
enforcement of large margin constraints. Our method
is an extension of the one proposed earlier by two of
the authors (Yu & Rousu, 2007), which deals with
the aforementioned QP problems resulting from non-
kernelized versions of large margin training formula-
tions. Our method differs from those of (Taskar et al.,
2004; Tsochantaridis et al., 2005; Rousu et al., 2006)
in its technique of handling the large number of margin
constraints by a data-dependent linear reparametriza-
tion of dual variables. This technique reduces the
dimension of the dual problem so that it is inde-
pendent of the size of the prediction space, and is
amenable to the use of efficient optimization methods
of the feasible-direction type. For problems with ad-
ditional parameter constraints, a simple example has
been demonstrated in (Yu & Rousu, 2007), where the
additional constraints are simple sign constraints. As
the problems considered here are more complex, we
enhance these techniques by combining several ideas.

In broad terms, the method we propose in this work
operates at two levels. At the top level, we apply the
proximal point algorithm and solve a sequence of reg-
ularized primal problems, which have nicer properties
than the original problem and whose solutions con-
verge to that of the latter. At the bottom level, we
solve each regularized primal problem by dual opti-
mization. In particular, by reparametrizing the multi-
pliers associated with the large number of linear mar-
gin constraints, we derive an equivalent size-reduced
dual problem which has an implicit polyhedral set con-
straint. We then use the restricted simplicial decom-
position (RSD) method (Hearn et al., 1987) to deal
with the set constraint, while we deal with the rest
of the constraints directly. Due to space limit, in this
extended abstract, we will describe only the principal
aspects of our method, leaving details, variants and ex-
tensions, as well as experiments on HMMs and some
UCI data sets for our full paper.

2. Formulation and Algorithm

Let 60;,7 € Z be vector-valued variables, each of which
corresponds to a vector of log-conditional probabilities
of some variable given its parents. Let K index the
training examples, and for & € K, let S; denote the
space of all possible value assignments of the hidden

variables in the k-th example. In the case of HMM,
for instance, 6; corresponds to the log state transi-
tion/observation probabilities, and Sy is the space of
the hidden state sequences for the k-th training trajec-
tory. We define some shorthand notation. For z € R¢
with components z;, e” denotes the vector in R with
components e%i. The shorthand 1’z will be used for
Zj:l x5, where we treat 1 as a vector of all ones with
however a varying dimension depending on x. We use
f to denote the vector consisting of the collection of
0;,i € T, and we adopt similar notation for other vari-
ables.

2.1. Primal Problem

We formulate the training problem as solving the fol-
lowing convex program:

(P) min =3 cif;+n) e (1)

€T kex
subj. > a;ik(s)0; +bp(s) < e, Vs €S, kek
€T
(2)
1ef <1, Viel (3)
0; <0, VieZ, € >0 Vkek (4)

Here, € denotes the collection of scalar slack variables
€,k € K, and n is some positive number. For each
example k € K, the linear constraints in (2) correspond
to the SVM-type margin constraints:

InP(s,0;0) —InP(s*,0;0) + li(s,s*) < e,

where (s*, 0) denotes the true values of the hidden and
non-hidden variables (respectively) given by the ex-
ample, s denotes a possible value assignment of the
hidden variables, and [, denotes the loss function.
The term ), 7 a; x(s)'0; corresponds to In P(s,0;6)—
In P(s*,0;0) (notice that the log joint probability is
a linear function of @), while the term bg(s) cor-
responds to I(s,s*). The constraint 1’¢% < 1
in (3) only requires the sum of the associated proba-
bilities to be no greater than 1. Apart from the pure
convexity/algorithmic-related reason, we interpret the
missing probability mass 1 — 1’e%, if 1’e% < 1, to be
the probability of the variable taking an “unknown”
value, given its parents. Each term in the summa-
tion — . 7 cif; in the objective function (1) is de-
rived from the KL-divergence D(p || ¢), where for each
i, we let ¢ = €%, while we let p = ¢; be some fixed
distribution, e.g., the uniform distribution or the ML
estimates. (Our optimization method applies to more
general choices of objective terms, which are not neces-
sarily linear.) These KL divergence terms ensure that
the solution of (P) is non-degenerate.
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2.2. Reparametrization

To effectively deal with the margin constraints (2),
we reparametrize the associated multipliers by a data-
dependent linear transformation that makes the di-
mension of the dual function independent of the size
of assignment space Si..! For each k € K, let 3}, with
components fi(s),s € S be the multipliers associ-
ated with the constraints (2), and let \; be the mul-
tipliers associated with the constraints (3) for each
i € Z. We write the dual problem equivalently in terms
of reparametrized variables (u,w, ) with an implicit
polyhedral set constraint:

(D) max w — z Ai + Z qi(feir i) (5)

LW, A " N
i€l 1€T
subj. A >0, (u,w) €D (6)

where the set D is determined by a data-dependent
linear transformation of 3:

Dz{(mw)‘m: > Bels)air(s),

keK,s€Sy

w= Z Br(s)br(s),

keK,s€Sk
820, VB, <n, VkeK} (7)
and the functions ¢;,7 € Z are defined by

@il A) = min [ (i — )0+ A1 ] (8)
0,<0
At an optimal dual solution (p*,w*,\*), an optimal

primal solution 6* can be determined from (8).

2.3. A Dual Proximal Point Algorithm

While for QP problems RSD can be applied directly
to solve the reduced dual problem after reparametriza-
tion (Yu & Rousu, 2007), for our problem there is a dif-
ficulty related to the domain of the dual function (5),
so we actually solve a sequence of regularized primal
problems by dual optimization and reparametrization.
Our algorithm can be viewed as a dual proximal point
algorithm. Instead of solving (D) directly, we solve a
sequence of (D,,) which is identical to (D) except that
the functions g; are replaced by ¢* defined by:
n .

¢i' (s, As) = min,

9)

We derive our reparametrization essentially from the
Lagrangian function. Based on the same idea, one can
derive alternative reparametrizations, including for formu-
lations with loss-rescaled slacks and quadratic penalties
(Tsochantaridis et al., 2005), as well as for partitioning
the training set into working sets; these can be found in
(Yu & Rousu, 2007) and our full paper.

(=) Bit A%+ % 6, ~67 |

Here, for all n, 0™ satisfies the constraints (3), with the
initial #° being any point, and v, € (0,7] for some ar-
bitrary positive v. The functions ¢}* and the dual func-
tion of (D,,) are everywhere real-valued functions, so
RSD can be applied directly to solve (D). A flexible
rule for changing 8™ can be given, based on proximal
point algorithm theory, for the solutions to converge
to the optima of (P) and (D).

Let us add two remarks relating to efficient compu-
tation, without giving details: (i) RSD operates by
making successive inner approximations of D and op-
timizing the dual function on them. The complexity
of the latter step is independent of the size of the orig-
inal problem. The former step corresponds to solving
loss-augmented inference problems. The set D and its
approximations are unaffected by a varying 6™, thus,
the overhead of the dual proximal point algorithm is
not as high as might seem. (ii) The value, gradient
and Hessian of the dual function of (D,,), needed in
RSD to optimize (D, ), can be computed efficiently.
The Hessian is useful for speeding up the convergence
by applying a projected Newton method (Bertsekas,
1982).
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