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1. Introduction

The main idea behind graph-based semi–supervised
learning is to use pair–wise similarities between data
instances to enhance classification accuracy (see (Zhu,
2005) for a survey of existing approaches). Many
graph–based techniques use certain type of regular-
ization that often involve a graph Laplacian operator
(e.g., see (Belkin et al., 2006)). Intuitively, this corre-
sponds to a diffusion process on graphs, where the in-
formation is propagated from the labeled instances to
the rest of the nodes. Usually, this information is rep-
resented as a continuos class–membership probabilities
(or scores), and the propagation process corresponds
to the diffusion of those scores through the graph.

We contrast this type of continuos diffusion approach
by a closely related, but a different one. Specifically,
instead of heat–diffusion like process, we consider a
discrete, epidemic–like process, where one propagates
categorical variables (such as class labels) rather than
class membership probabilities. This can be done by
combining the diffusion operator with a non–linear
transformation that maps the class probabilities onto
class labels at each iteration step. We refer to the dif-
fusion and epidemic based approaches as Score Propa-
gation (SP) and Label Propagation (LP), respectively.

Here we compare the two approaches on a semi–
supervised learning (ranking) task. Our main findings
can be summarized as follows. We find that, while nei-
ther approach dominates the other on the entire range
of the parameters, there are some interesting differ-
ences and tradeoffs between them. Specifically, our
results suggest that the epidemic propagation mech-
anism (LP) tends to be more robust to noise. We
also find that, even when the ranking accuracy of
both mechanisms are similar in terms of their AUC
(area under the curve) scores, they might have signif-
icantly different ROC (Receiver–Operator Character-

istics) curves, especially for small false positive rates.
Below we provide a more detailed account of our find-
ings.

2. The Problem and the Algorithms

We assume that the data is represented as an undi-
rected (symmetric) graph, where the nodes belong to
one of two classes, A and B. Given this graph, and
a set of initially labeled nodes (queries, or seeds) from
class A, the task is to rank thee remaining nodes ac-
cording to their similarity to A.

Continuous Diffusion (SP): The continuous dif-
fusion mechanism used here is very similar to models
widely studied in the literature (Zhu & Ghahramani,
2002; Zhou et al., 2004). Let us associate a score si

with node i, that describes its relative likelihood of
being in class A. Then the scores are updated iter-
atively as follows: st+1

i = 1
zi

∑
j Wijs

t
j . where zi is

the number of neighbors of node i, and W is the adja-
cency matrix: Wij = 1 if nodes i and j are connected
and Wij = 0 otherwise. Thus, at each iteration, the
class membership score of a node is set to the average
of the class–membership scores of its neighbors at the
previous iteration. The scores of the initially labeled A
nodes are clamped to 1, while the rest of the nodes are
initially assigned a score 0. Because of the clamping,
the average score in the system increases with time. In-
deed, using the analogy with a heat–diffusion system,
it is easy to see that the seed nodes act as diffusion
sources that pump more heat into the network at each
iteration. And since there are no sink–nodes to absorb
the generated heat, the score of all nodes will even-
tually converge to 1, provided that the graph is fully
connected. To prevent this from happening, we stop
the iteration after the average score exceeds some pre-
defined threshold, chosen to be 0.9 in the experiments
reported below. We observed that the final ranking of
the nodes according is not sensitive to the choice of
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this threshold.
Epidemic Model (LP): For the epidemic process
(LP), we use a simple mechanism that is in some sense
the discrete analogue of the SP scheme. Let us assign
binary state variables σi = {0, 1} to all nodes so that
σi = 1 (or σi = 0) means that the i–th node is labeled
as type A (or is unlabeled). At each iteration, and for
each unlabeled node, we calculate the fraction of the
labeled nodes among its neighbors, ωt

i =
∑

j Wijσ
t
j/zi,

find the nodes for which the fraction is the highest, and
label them as type A. This procedure is then repeated
until all the nodes has been labeled.

While ranking nodes in the SP scheme is straightfor-
ward, we need a different ranking mechanism for the
LP scheme. Specifically, we assume that the nodes
that are similar to the initially labeled nodes will tend
to be better connected with them, hence they will be
infected earlier in the iteration. Thus, we will rank
nodes according to their infection times.

3. Main Findings

We have compared two algorithms for a wide range
of the parameters, varying class overlap, skew in class
sizes, noise in the initially labeled set, and so on. For
a full account of those experiments, including ones on
real–world data, we refer the reader to (Galstyan &
Cohen, 2007). Here we describe two of the most il-
lustrative experiments conducted on synthetic data.
The data is generated as follows: The link structure
within both classes are described by the Erdos–Renyi
graphs G(NA; pa

in) and G(NB ; pb
in)1, where NA and

NB are the number of nodes in respective classes. The
overlap across the classes is provided by linking each
of the NANB possible A − B pairs with probability
pout. Thus, the average number of links per node
(connectivities) within and across the classes are given
by zaa = pa

inNA, zbb = pb
inNB , zab = poutNB and

zba = poutNA. Note that if the sizes of two classes are
not equal then zab 6= zba.

ROC analysis In Figure 1(a) we present the ROC
analysis of both schemes. For this particular choice of
the connectivities, the AUC scores are 0.95± 0.01 and
0.97 ± 0.01 for SP and LP, respectively. What is re-
markable, however, is that despite the similar overall
ranking accuracy, the two classifiers are quite distinct
for small false positive rates. In other words, the dif-
ference in the AUC scores is not distributed equally
over the whole ROC plane. Instead, the main differ-
ence is for the false positive range 0 < FP < 0.1. For

1Erdos–Renyi graph G(N; p) is constructed by indepen-
dently linking each pair of N nodes with probability p.
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Figure 1. (a) The ROC curves for the LP and SP mech-
anisms. (b) The AUC score plotted against the ratio
N0

B/N0
A.

FP > 0.3, on the other hand, SP achieves marginally
better true positive rates. This observation suggests
that if the cost of false positives are high, then LP
is a superior choice for small class overlap. This can
be especially important in the case of a highly skewed
class distribution, where even tiny false positive rates
will translate into a large number of falsely classified
instances. The inset shows the difference between true
positive rates, ∆TP = TPLP − TPSP , as a function
of FP . The bars in the plot are two standard devi-
ations wide and centered around the mean. Clearly,
for a small interval around FP = 0.05, this difference
is positive and statistically significant, and achieves a
value as high as ∼ 0.3.

Impact of Noise Next, we examine the effect of
noise on the performance of both algorithms. Noise
was introduced by randomly choosing N0

B nodes from
the class B and mislabeling them as type A initially.
We set the number of initially labeled A nodes to
N0

A = 40, and studied how the AUC score changed
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as we increased the number of mislabeled nodes, N0
B

(the number of nodes in each class are NA = 200 and
NB = 2000). The results are presented in Figure 1
(b), where we plot the AUC score against the ratio
N0

B/N0
A. Remarkably, the noise has distinctly different

effects on SP and LP. The LP algorithm seems to be
very resilient to the noise and has an AUC score close
to ∼ 0.97 even when the number of mislabeled nodes
is N0

B = 200, or five times the number of correctly
labeled nodes. The performance of the SP algorithm,
on the other hand, deteriorates steadily starting from
moderate values of noise and attains an AUC score of
only 0.68 for N0

B = 200. A similar, although weaker,
effect is observed for moderate value of class overlap:
The AUC score of the SP algorithm decreases almost
linearly, while for the LP algorithm the decrease is
initially much slower. Finally, for the case when the
class–overlap is very large, the noise seems to affect
the performance of both algorithms very similarly.

To find out whether the results presented above hold
for more realistic data, we have also experimented with
the CoRA data–set of hierarchically categorized com-
puter science research papers (McCallum et al., 2000).
Specifically, we focused on the papers in the Machine
Learning category which comprises of seven differ-
ent subtopics2. We observed that, generally speak-
ing, the results obtained for the CoRA data were
somewhat different from the results for the synthetic
data. For instance, we found that the ranking accu-
racies were lower than one would expect for a random
Erdos–Renyi topology with corresponding connectivi-
ties. However, our experiments indicate that the main
results for the synthetic data also hold for some of the
CoRA topics. In particular, we established that for
the majority of the topics the LP algorithm was in-
deed more robust to noise. Furthermore, the different
ROC behavior of two algorithms present in synthetic
data was observed in the CoRA data as well, with
LP achieving better accuracy for smaller false positive
rates (Galstyan & Cohen, 2007).

4. Discussion

We have presented empirical comparison of two diffu-
sion schemes for graph–base semi–supervised ranking
problem. Our results indicate that even when both ap-
proaches have the same overall ranking accuracy, their
ROC behavior can be drastically different. Specifi-
cally, we found that the discrete label propagation
(LP) might be a significantly better choice for small
values of acceptable false positive rates. Our second

2The multi–class problem was mapped onto a binary
classification problem for each individual topic.

important finding is that when the classes are well–
separated, the LP scheme is much more robust to the
presence of noise in the initially labeled data. Thus,
propagating hard labels instead of scores might be a
better choice if the prior information is noisy. This is
a very general result, so we believe that it might have
important implications in many ranking and classifica-
tion tasks where the labeled examples might be noisy.

As a future work, we would like to understand the
different behavior of two algorithms through analyz-
ing statistical properties of the corresponding models.
To give an example of such an analysis, let us con-
sider the impact of noise on both models. First, let us
consider the SP mechanism. Our initial investigation
suggests that for the SP scheme, a node’s final score
is strongly correlated with the number of initially la-
beled nodes (seeds) among its immediate neighbors.
In particular, if between a B-node i and an A–node j
the former has more links with the seed nodes, then in
an overwhelming majority of cases i’s final score will
be greater than j’s, thus contributing negatively to the
AUC score. To be more specific, let Pa(k) and Pb(k) be
the probabilities that a randomly chosen node of type
A or B is connected to exactly k seed nodes. Then
the probability that a randomly chosen A–node has
at least as many neighboring seed nodes as a B–node
is pSP =

∑∞
k=0 Pa(k)

∑k
j=0 Pb(j). Note that if the as-

sumption above (e.g., higher k means higher score) was
always true, then pSP would give us an upper bound
on the AUC score. Thus, the accuracy of the SP al-
gorithm is affected by the amount of overlap of those
two distributions, Pa(k) and Pb(k). Indeed, our ini-
tial results suggests that, in the presence of noise, the
behaviors of pSP and the AUC score are qualitatively
very similar.

For the LP scheme, on the other hand, the accuracy
is determined mostly by the tails of the distributions
Pa(k) and Pb(k) rather than their overlap. Indeed, let
Ka = {k1

a, k2
a, ...kNa−N0

a } and Kb = {k1
b , k2

b , ...kNb
a } be

random samples from distributions Pa(k) and Pb(k),
respectively, and let Ka,b

max = maxk{k ∈ Ka,b}. Ka
max

and Kb
max are random variables themselves and are

distributed according to the largest order statistic,
Pa,b(Kmax). Unlike the SP case above, we cannot
directly obtain an approximation for the AUC score
using these distributions. However, one can still ex-
amine the effect of the noise by calculating the prob-
ability that for a given number of labeled A and B
nodes at a certain point in the iterations, no B node
will be mislabeled at the next iteration. This probabil-
ity is given by an equation similar to the expression for
pSP with Pa,b(k) replaced by respective largest order
statistics distribution. Again, our initial results sug-
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gest that even this simple analysis explains, at least
qualitatively, some of the observed behavior in the
presence of noise. We intend to develop more refined
analytical approaches for examining both models more
thoroughly.
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