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Abstract

This short report analyses a simple and intu-
itive online learning algorithm - termed the
graphtron - for learning a labeling over a fixed
graph, given a sequence of labels. The con-
tribution is twofold, (a) we give a theoretical
characterization of the possible sequence of
mistakes, and (b) we indicate the use for ex-
tremely large-scale problems due to sublinear
space complexity and nearly linear time com-
plexity.

This work originated from numerous discus-
sions with John, Mark and with Johan.

1. Introduction

Many prediction problems can be reduced to the ba-
sic problem of predicting the labeling of all nodes in a
given graph, after observing a few labels. We mention
the application of labeling web pages as ’spam’ or 'non-
spam’ on the www network after seeing some example
pages with corresponding label, the selection of people
in a social network as a potential advertisement target,
or predicting disease relatedness over functional gene
networks. This setting of transductive inference is con-
sidered as ’less complex’ (in some sense) compared to
the general inductive learning setting, where one not
only aims for the labeling of the given nodes (data-
points), but for a generic predictive rule as well. A
main advantage of studying this scheme is that one
has to learn over finite domains (all possible label-
ings). This work explores further this learning scheme
as introduced in (Vapnik, 1998) and followup work,
and specifies further towards finite, weighted undi-
rected graphs as in (Blum & Chawla, 2001; Joachims,
2003; Blum et al., 2004; Hanneke, 2006), and work
done by the author (Pelckmans et al., 2006; Pelck-
mans et al., 2007a; Pelckmans et al., 2007b; Pelckmans
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et al., 2007¢). A probabilistic approach was taken in
the above publications, relying basically on a suitable
random sampling mechanism of the labeled nodes, giv-
ing rise to firm probabilistic guarantees based on ex-
ponential concentration inequalities. Moreover, one
considered here the batch learning setting, where the
labels which are to be used for training are all available
at the time of application of the learning algorithm.

This work takes another route, namely that of online
learning, where the learning machine is presented with
a sequence of labels, and has to predict those only
based on the preceding labels. The classical algorithm
corresponding to this scheme is the perceptron algo-
rithm, marking the start of the movement of artificial
intelligence. It is only recently that this is applied for
the setting of learning over graphs, namely in (Herb-
ster & Pontil, 2007) a modification of the perceptron is
introduced, based upon the role of the (pseudo-inverse
of the) graph Laplacian to represent the nodes in a
genuine coordinate system, and application of the per-
ceptron on this one follows straightforwardly. Here al-
ready, the role of the graph cut induced by the true
labeling (in combination with the graph resistance di-
ameter) was found of paramount use in the derivations.

Consider weighted undirected graphs G = (V, £) with
n nodes in V and loopless edges £ with positive weights
{ai; = aj; > 0};;. Let the graph Laplacian L =D — A
with A the positive adjancy matrix, and D the corre-
sponding degree matrix. Remark that the vector 1,
belongs by construction to the null-space of L. The
graph cut associated to a labeling y € {—1,1}" over
the nodes can then be formalized as

n

1 1
cut(y) = Y ai; = 1 > ailyi— )’ = 1Y Ly
YiFY; 3,j=1
(1)

2. Graphtron Algorithm

Consider the graphtron online algorithm as described
in algorithm 1, with the set M cumulating the mis-
takes. The proposed graphtron algorithm. Note that
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ties (or >_;cp, aijy; = 0) are treated always as mis-
takes in this scheme.

Algorithm 1 Graphtron
Input: initialize M ={},m =0
repeat

1. An adversarial asks the label of node 1.
2. We predict

Z aijy;

JEM’HL

Yi = sign

3. Nature provides the true label y;
if ; # y; then
Myi1 =My U{i} and m=m+1
end if
until one is satisfied (computationally, accuracy)

This algorithm will make only a small number of mis-
takes, and the occurrence of mistakes can be character-
ized in terms of the graph topology. At first, we define
the notion of the mistake subgraph G,; as follows:

Definition 1 (Mistake Subgraph) Let M = My,
contain the indices of nodes where the algorithm in-
curs a mistake. Then the mistake subgraph Gy is the
subgraph of G which only contains the nodes in M, and
the present edges between them. Furthermore, let dps
be the degrees of the subgraph spanned by the nodes in

M, or dM,i = ZjeM aij.

The analysis is much in the same style of Novikoff’s
mistake bound for the perceptron algorithm.

Lemma 1 (Mistake Bound) Let y* be the true la-
beling. The above algorithm will incur at most | M|
mistakes where

Z dari < 4cut(y™),
ieM

where Y.y dari equals twice the weight of all edges
in the mistake graph Gp;.

Proof: The proof relies on decomposing the true
labeling in the mistaken labels (in the set M) and the
correctly predicted ones (in the set T') such that one
has

Y =ym +yr,
where yyr; = vy for i € My, and zero otherwise, and

similarly yr; = y; for i ¢ M,, and zero otherwise Let
Aj denote the lower triangular part of A such that

A = A} + Ap. Now, note that the consequence of
predictions made by the algorithm can be written as

9§ = sign (AzLynm),

where the sign is applied elementwise. Remark that a
key issue is that the diagonal of A are all zero, and
A yy is not dependent on the currently node. The
following inequality provides the crux of the argument

Yy Lyn = yaDynr — 20 ALyn > Yy Dyar,

since Y, ALynm = Yy AL yn, and yar (A pyar) will con-
tain only mistakes and is necessarily smaller than 0.
Conversely, one has

deut(y”) = y'Ly > Yy Larym

since the graph spanned by only the nodes in M is a
subgraph of the total graph with Laplacian Lj;. Let
D1 and Dy, be the degree matrices of the after cutting
the nodes in M, and the remaining ones respectively
such that D]\/I,ii = Zje]% Qi and DT,ii = Eng (%7
foralli=1,...,n,and D = D7+ Dj;. Then one has
that vy, Ly = vy (D — A)ynr and

YLy = vy (D—Dr—A)yn = Yy Lyn—yyuDrym

Combining the above (in)equalities yields

deut(y”) >y (D — Dr)yy = Z(di —dr,;)
ieM

since D and D7 are diagonal, and the result follows.

O

Specifically, if one has cut(y*) = 0, one could not
make any mistakes which are linked together, or
> iem dari = 0 (if two nodes were connected, they
could not have a different label). This inequality can
now be worked out to give a specific bound for vari-
ous topologies. For example, consider a binary fully
connected graph (a clique). If all nodes have the same
labels (or cut(y*) = 0), one has m < 1 which is tight.
If the clique contains two disjunct classes, one has

(m —1)m < 4cut(y”)

since any subgraph of m nodes will have a total weight
of m(m —1). Similarly, if one has two disjunct cliques
and labeling y* with cut(y*) = 0, one has m < 2 which
again is tight. Thirdly, consider a binary weighted
graph consisting of 2 cliques with a single link between
those, and assume the true labeling cuts this single
edge e. Then the algorithm could incur at most three
mistakes (one at the interface of clique 1 with e, one
inside clique 2, and the last at the intersection of clique
2 with e), and the bound would work out to be tight
again.
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3. Discussion

We enumerate some strengths of the algorithm.

1. The time complexity is at most O(nm) if one
could identify the links from any point to the
m points in M in O(m). In case the number of
mistakes m is O(1), the time complexity require-
ment is linear. This is a considerable improvement
over the approach proposed in (Herbster & Pontil,
2007) requiring the computation of the pseudo-
inverse of the graph Laplacian.

2. The space requirement is only O(m). and there
is no need whatsoever to store the full graph at a
single instance in memory. This makes this learn-
ing algorithm especially useful for learning over
growing graphs.

3. We do not rely on any instance on an appropri-
ate, random sampling scheme. From the analy-
sis it even follows that one would benefit largely
by scheduling the nodes incurring a mistake as
soon as possible. This makes this approach es-
pecially appropriate for experimental design and
explorative settings.

4. The algorithm appeals to intuition in that one
only learns from (and memorizes) nodes whose la-
bels do not match ones expectation from looking
at previous experience. This arguably matches
the dynamics of education fairly well - as it is the
task of the teacher to show how knowledge can
be improved (or a question/node will be mispre-
dicted by the student).

A practical validation of the scheme will be presented
in the full publication, as well as various nontrivial
bounds of the term ,,, das; for various topologies.
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