
A Hilbert-Schmidt Dependence Maximization Approach to
Unsupervised Structure Discovery

Matthew B. Blaschko blaschko@tuebingen.mpg.de
Arthur Gretton arthur@tuebingen.mpg.de

Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany

1. Introduction

In recent work by (Song et al., 2007), it has been pro-
posed to perform clustering by maximizing a Hilbert-
Schmidt independence criterion with respect to a pre-
defined cluster structure Y , by solving for the parti-
tion matrix, Π. We extend this approach here to the
case where the cluster structure Y is not fixed, but is
a quantity to be optimized; and we use an indepen-
dence criterion which has been shown to be more sen-
sitive at small sample sizes (the Hilbert-Schmidt Nor-
malized Information Criterion, or HSNIC (Fukumizu
et al., 2008)). We demonstrate the use of this frame-
work in two scenarios. In the first, we adopt a cluster
structure selection approach in which the HSNIC is
used to select a structure from several candidates. In
the second, we consider the case where we discover
structure by directly optimizing Y .

2. The normalized H-S independence
criterion

Let F be a reproducing kernel Hilbert space of func-
tions from X to <, where X is a separable metric
space. To each point x ∈ X , there corresponds an
element φ(x) ∈ F (we call φ the feature map) such
that 〈φ(x), φ(x′)〉F = k(x, x′), where k : X × X → <
is a unique positive definite kernel. We also de-
fine a second RKHS G with respect to the separa-
ble metric space Y, with feature map ψ and kernel
〈ψ(y), ψ(y′)〉G = l(y, y′).

Let PrX,Y be a joint measure on (X × Y,Γ × Λ)
(here Γ and Λ are the Borel σ-algebras on X and Y),
with associated marginal measures PrX and PrY and
random variables X and Y . Then following (Baker,
1973; Fukumizu et al., 2004), the covariance operator
Cxy : G → F is defined such that for all f ∈ F and
g ∈ G,

〈f, Cxyg〉F = Ex,y ([f(x)−Ex(f(x))] [g(y)−Ey(g(y))]) .

In practice, we do not deal with the measure Prx,y it-

self, but instead observe samples drawn independently
according to it. We write an i.i.d. sample of size n
from PrX,Y as zzz = {(x1, y1), . . . , (xn, yn)}, and like-
wise xxx := {x1, . . . , xn} and yyy := {y1, . . . yn}. Finally,
we define the Gram matrices K and L of inner prod-
ucts in F and G, respectively, between the mapped
observations above: here K has (i.j)th entry k(xi, xj)
and L has (i, j)th entry l(yi, yj). The Gram matrices
for the variables centered in their respective feature
spaces are

K̃ := HKH, L̃ := HLH,

where
H = I− 1

n
111n111>n , (1)

and 111n is an m× 1 vector of ones.

We now define the normalized covariance operator,
and the associated operator norm, following (Fuku-
mizu et al., 2008). We know from (Baker, 1973) that
the covariance operator can be decomposed as

Cxy = C1/2
xx VxyC

1/2
yy ,

where Vxy is the normalized cross-covariance operator
(its maximum singular value is bounded by 1).

As discussed in (Fukumizu et al., 2008), when the ker-
nels are characteristic, then ‖Cxy‖2HS = ‖Vxy‖2HS = 0
if and only if the random variables are independent.
Universal kernels in the sense of (Steinwart, 2001) are
characteristic, as are Gaussian kernels on <d. Thus,
both the covariance operator and the normalized co-
variance operator can be used as dependence mea-
sures between random variables. According to (Gret-
ton et al., 2005), an empirical estimate of ‖Cxy‖2HS is

HSIC(F ,G,xxx,yyy) := Tr [HKHL] ,

which we call the Hilbert-Schmidt Independence Cri-
terion. Likewise, the Hilbert-Schmidt Normalized In-
formation Criterion denotes the empirical estimate of
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‖Vxy‖2HS, and is defined

HSNIC(F ,G,xxx,yyy) := Tr
[
K̃(K̃ + εnI)−1L̃(L̃ + εnI)−1

]
,

where εn is a regularization parameter which decays
to zero with increasing n. It is shown (Fukumizu
et al., 2008) that subject to an appropriate decay in
the regularization scaling for increasing sample size,
this asymptotically approaches the mean squared con-
tingency,

HSNIC(F ,G,xxx,yyy) P→ (2)∫ ∫
X×Y

(
PrX,Y (x, y)

PrX(x) PrY (y)
Pr
X

(x) Pr
Y

(y)dµ(x)dµ(y)
)
.

3. Structure Selection

We now apply the HSNIC to the problem of cluster
structure selection. In Figure 1, we show example im-
ages from a 9 class dataset consisting of three differ-
ent faces with 3 different facial expressions each (Song
et al., 2007). The first set of experiments we have per-
formed is to use HSNIC as a measure to select out of a
set of possible structures, the one that best represents
the data.

For these experiments, we have constructed matrices
Ya, . . . , Yh based on the tree structures in Figure 2.
Each leaf node represents a cluster, and the entry Yij

is proportional to the depth of the closest interior node
that connects leaf i and leaf j. For each structure
matrix, we optimize for the corresponding partition
matrix, Π∗, that maximizes the HSNIC score,

HSNIC(Π) = Tr
[
MxHΠYΠTH

]
(3)

where Mx = K̃(K̃ + εnI)−1, using the algorithm de-
scribed in (Song et al., 2007). In order to ensure com-
parability of the HSNIC scores across different struc-
tures, it is necessary to normalize Y prior to compu-
tation of the score as follows

Ỹ =
Y√

Tr [ΠYΠTHΠYΠTH]
. (4)

We provide a scatter plot in Figure 3 of the result-
ing HSNIC scores along with the conditional entropy
H(l|c) of the true labels, l, given the predicted clus-
ters, c. H(l|c) ≥ 0 with equality only if the clusters are
pure. We note that there is extremely high negative
correlation between the HSNIC scores and the condi-
tional entropy. This indicates that for these structures,
HSNIC is very well able to determine which one best
separates the classes.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Face dataset

4. Structure Discovery

We have shown in the previous section that the HSNIC
objective is well suited for structure prediction given
a fixed set of possible structures, and we explore here
how to more directly optimize the Y matrix rather
than selecting from a fixed set. We describe a direct
optimization strategy that constrains Y only to be pos-
itive definite. We therefore wish to find a decomposi-
tion of Mx ≈ λΠYΠT subject to Y � 0 ∈ Rk×k, Π be-
ing a partition matrix, and Tr

[
ΠYΠTHΠYΠTH

]
= 1,

where λ is a scale factor. We have used an iterative
approach to find a local optimum of this problem by
solving alternately for Π and Y . First we fix Y and
solve for Π using the algorithm of (Song et al., 2007).
Then we fix Π and solve for Y . The second optimiza-
tion can be solved in closed form by solving for the
KKT conditions, yielding

Y ∗ ∝
(
ΠTHΠ

)−1
ΠTHMxHΠ

(
ΠTHΠ

)−1
. (5)

We have repeated the experiments with initial settings
of Y given by the structures in Figures 2(b) and 2(h),
as well as random initializations. In each case, the
learned structure converged to the same matrix, up to
a permutation (Figure 4). For comparison, the learned
clustering yields an entropy score of 0.7759, which is
worse than the performance of the structure given in
Figure 2(b) despite the higher HSNIC score. How-
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. Structures used in the structure selection exper-
iments

ever, the matrix in Figure 4 indeed has a plausible
structure. Faces 1(a)-1(c) are conflated into the same
cluster, with the exception of two singleton clusters,
while the rest of the classes are perfectly clustered.
Furthermore, classes 1(d) and 1(e) are given high sim-
ilarity, as well as classes 1(g) and 1(h).
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Figure 3. Scatter plot of HSNIC vs. conditional entropy.
The letters correspond to the structures in Figure 2. Cir-
cled in red is the point with the best conditional entropy
score, and the one that is selected by the HSNIC structure
selection. HSNIC and conditional entropy scores have a
correlation coefficient of −0.93.
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Figure 4. The learned structure for the Faces dataset.
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