
Representative Subgraph Sampling using Markov Chain Monte Carlo Methods

Christian Hübler1, Karsten Borgwardt2, Hans-Peter Kriegel1, Zoubin Ghahramani2
1 Ludwig-Maximilians-Universität München, 2 University of Cambridge

Abstract
Bioinformatics and the Internet keep generating
graph data with thousands of nodes. Most tra-
ditional graph algorithms for data analysis are
too slow for analysing these large graphs. One
way to work around this problem is to sample a
smaller ‘representative subgraph’ from the origi-
nal large graph.

Existing representative subgraph sampling algo-
rithms either randomly select sets of nodes or
edges, or they explore the vicinity of a randomly
drawn node. All these existing approaches do not
make use of topological properties of the original
graph and provide good samples down to sam-
ple sizes of approximately 15% of the number of
nodes in the original graph. In this article, we
propose novel sampling methods for representa-
tive subgraph sampling, based on the Metropo-
lis algorithm and Simulated Annealing. The key
idea is to find a subgraph that preserves proper-
ties of the original graph that are efficient to com-
pute or to approximate.

In our experiments, we improve over the pio-
neering work of Leskovec and Faloutsos (KDD
2006), by producing representative subgraph
samples that are both smaller and of higher qual-
ity than those produced by other methods from
the literature.

1. Introduction
In many application domains it is desirable to study a rep-
resentative subgraph rather than the entire original graph,
because the original graph with thousands of nodes might
be too large for traditional graph algorithms that are often
designed for graphs with tens of nodes. We will present
algorithms for this task of ’representative subgraph sam-
pling’, with ’representative’ describing the requirement that

Preliminary work. Under review by the International Workshop
on Mining and Learning with Graphs (MLG). Do not distribute.

the sample shall preserve crucial graph properties of the
original graph. This problem can be cast into the following
optimization problem:

argmin|G′|=n′∆(S(G′), S(G))

where G is the original graph, G′ the subgraph sample,
S(X) is a topological property of graph X , and ∆ is a dis-
tance function on these topological properties. n′ is the
desired size of the subgraph sample that has to be pre-
specified.

2. Metropolis Graph Sampling
From a statistical point of view, induced graph sampling is
the task to draw a set x of n′ nodes from the n := |V (G)|
nodes of the original graph G. For example in the case of
RandomNode (Leskovec & Faloutsos, 2006) the samples x
are uniformly distributed on the sample space X = {x ⊂
V (G)|n′ = |x|}.

The main idea of Metropolis graph sampling is to draw
a sample from the sample space X following a specific
density %(x). This density should reflect subgraph sam-
ple quality well, which means good induced samples G′ =
G(x) should be drawn more frequently than worse ones.
Thus %(x) depends on the quality of the sample G(x).
From this point of view an obvious choice of %(x) is one
depending on a distance measure with respect to a pre-
processed graph property. The severe problem with such
a density %(x) is that it is only given in an unnormalized
manner %∗(x). To obtain the normalized density %(x) we
have to calculate and sum over

(
n
n′

)
summands which is

obviously intractable:

%(x1) =
%∗(x1)∑
x∈X %∗(x)

How can we draw samples from the sample space X if
the underlying normalized density %(x) is not given ex-
plicitly? This problem is solved by the Metropolis algo-
rithm (Metropolis et al., 1953). In general Metropolis can
draw samples from any probability distribution, provided
that a function f(x) proportional to the density %(x) (in
our case inversely proportional) can be calculated for any

Representative Subgraph Sampling using Markov Chain Monte Carlo Methods

Algorithm 1 Metropolis Subgraph Sampling
Input: Graph G, distance function f(·) = ∆G(·), sample

size n′, number of possible transitions #it, exponent p
x← uniformly at random from X
bestx ← x
bestf(x) ← f(x)
for i := 1 to #it do

y ← uniformly at random from adjacent states A(x)
α← uniformly at random from interval [0, 1]
if α < (f(x)

f(y))
p then

x← y
if f(x) < bestf(x) then

bestx ← x
bestf(x) ← f(x)

end if
end if

end for
Output: G(bestx)

x ∈ X. In our case f(x) can be any distance measure be-
tween topological properties of the sample G(x) and the
original graph G, for instance, a distance on degree distri-
butions.

We use the Metropolis algorithm for optimization rather
than for approximating a distribution. We turn Metropolis
into an optimization algorithm by choosing an appropriate
unnormalized density %∗(x), which in our case is inversely
proportional to a distance measure f(x) = ∆(G, G(x)) =
∆G(x) between the real graph G and the sample G(x). As
the search space is exponential in the size of the subgraph
sample, we have to reward ‘good’ samples extremely be-
cause otherwise lower-quality samples would dominate the
process of sampling due to their large number. We do this
by exponentiating the difference f(x) by a large positive
scalar p. Hence we define %∗ as

%∗p(x) :=
1

f(x)p
=

1
∆G(x)p

=
1

∆(G, G(x))p
, (1)

where p ∈ R+ and p� 0 (see pseudocode in Algorithm 1).

How is a new state y generated in our Metropolis Subgraph
Sampling procedure? We delete one node from the current
subgraph sample and all its adjacent edges. Then we ran-
domly pick a new node from the graph and insert it (and
its edges adjacent to the sample nodes) into our subgraph
sample.

Speeding up convergence A common way to avoid that
the Metropolis algorithm gets stuck in local optima is to
use Simulated Annealing which gradually increases the ex-
ponent with proceeding runtime. Since Simulated Anneal-
ing avoids local optima which can slow down convergence,

it may be useful for speeding up the sampling process. We
define the density for Simulated Annealing as

%∗p,T (x) = e
log %∗p(x)

T = elogf(x)(−
p
T

)
= f(x)(−

p
T),

where T is the temperature parameter that is gradually de-
creased towards zero during Simulated Annealing.

We also propose a new graph-specific approach called
Chaining to speed up convergence: As mostly the real
graph G is connected or at least consists of few connected
components, it can be observed that good samples are ex-
tremely often connected. Thus Chaining is restricting the
search space X to connected samples. While reducing the
size of the search space, Chaining obviously requires addi-
tional checks whether a subgraph sample that is created by
node deletion and insertion is still connected.

3. Experimental evaluation
3.1. Sampling

We test our described algorithms on 5 datasets representing
graph models of a protein, the Internet, two social networks
and a PPI-network. The 329 to 75879 nodes of these real-
world graphs are connected with 2100 to 420899 edges. On
these 5 datasets, we ran 15 different sampling strategies to
generate a representative subgraph sample with n′ = 100
nodes each.1 These 15 approaches included 4 state-of-the-
art methods for representative subgraph sampling: Ran-
domNode (RN) and RandomEdge (RE), that randomly
sample nodes and edges from the graph, and ForestFire,
once for sampling induced subgraphs (FFi), once for sam-
pling non-induced subgraphs (FF).

We compared these methods to our novel approaches to
representative subgraph sampling: Metropolis subgraph
sampling (M), and Chaining (CH). We ran Metropolis
once each for approximating the degree distribution (Md),
the graphlet distribution (Mg), the clustering coefficient
(Mc) and for the unweighted combination (Mdcg) and a
weighted combination (M10dcg) of these three 3 criteria.

We set %∗ as in equation (1). For the two criteria which gave
the best results using Metropolis, namely degree distribu-
tion (d) and weighted combination (10dcg), we repeated the
same experiments using Chaining (Chd and Ch10dcg). To
assess the effect of Simulated Annealing both on runtime
and sample quality, we performed Metropolis and Chaining
using a Simulated Annealing Schedule, both for the degree
distribution (MSA

d and ChSA
d) and the weighted combina-

tion (MSA
10dcg and ChSA

10dcg).

For our experiments, we use Simulated Annealing with a

1We have implemented all described algorithms in Java. All
tests were performed on a P4 with 2.6 GHz and 2 GB main mem-
ory.

Representative Subgraph Sampling using Markov Chain Monte Carlo Methods

geometric annealing schedule, which means that we grad-
ually reduce the temperature in the following manner:

Tt+1 = γTt with 0 < γ < 1

where t is the t-th step in our sampling procedure.

3.2. Parameter settings

Before we discuss our results, we provide the crucial pa-
rameter settings here that allow the reproduction of our
findings.

Forest Fire The quality of samples obtained by ForstFire
depend on the accurate choice of the forward burning prob-
ability pf . In (Leskovec & Faloutsos, 2006) a forward
burning probability pf > 0.6 is proposed for sampling.
This is consistent with our results in initial test runs, hence
we use pf = 0.7.

Metropolis The number of iterations #it, which describes
the maximum number of transitions performed by the
Markov Chain, is set to 10,000 and the exponent p is de-
termined via p = 10 · k

n log10 n, with k being the number
of edges of G.

When using a combination of degree distribution, graphlet
distribution and clustering coefficient, we consider an un-
weighted sum of the distances on them (Mdcg), or a
weighted sum in which the distances on the degree distribu-
tion get 10 times more weight than those on graphlets and
clustering coefficient (M10dcg), as the degree distribution is
the criterion that reaches the best results on its own. When
using these weighted or unweighted combinations of three
graph properties, we performed 20,000 iterations instead of
10,000 to be sure that the Markov Chain will converge and
the pre-calculation of 3 graph properties was not in vain.

Chaining As Chaining remarkably speeds up convergence,
but requires additional runtime to check connectedness of
samples, we only perform one third of the iterations exe-
cuted in standard Metropolis.

3.3. Evaluation

To measure the quality of the sampled subgraphs, we
compute their distance to the original graph in terms of
the degree distribution (degree), the diameter (diam), the
clustering coefficient (clust), and the graphlet distribution
(graphlet). In addition, we compute the mean of these 4
distances, which gives us the average distance, denoted by
AV G. We report sample quality in terms of these distances
between the subgraph sample and the original graph in Ta-
ble 1 as averages over 25 repetitions on all 5 datasets.

In addition to the quality of the sample, the runtime t (in
seconds) of each algorithm is shown in the last column.
Because all proposed algorithms need to precompute some

graph properties, the amount of time (also in seconds) this
pre-calculation requires is stated as tprep. tread denotes the
time required to read the original graph. trun is the runtime
of the actual sampling stage.

Sample Quality As can be seen from Table 1 (Column
AVG), 8 out of the 11 variants of our Metropolis sampling
algorithms outperform all existing state-of-the-art sampling
algorithms in terms of sample quality. They preserve the
graph properties of the original graph in a subgraph sample
of size n′ = 100 better than all other methods.

Metropolis It is a remarkable fact that Md, although ap-
proximating the degree distribution of the original graph G
only, is able to approximate the clustering coefficient vec-
tor and the graphlet distribution of G on average better than
any of the state-of-the-art methods. Even in terms of the
approximating the diameter, it is second best only to FFi

among the existing methods.

In terms of runtime, our methods are fast despite the need to
compute graph properties: Even on the largest graph (Epin-
ions, 75879 nodes), our slowest method (M10dcg) gener-
ates a high-quality subgraph sample in∼ 367 seconds. Our
fastest method MSA

d generates a high-quality sample in 2
seconds on the same dataset. Md is faster than the other
variants of Metropolis (Mc, Mg , Mdcg , and M10dcg), as
the degree distribution can be computed more efficiently by
parsing the adjacency list representation of a graph once.

Chaining Chaining leads to a speed-up in runtime if its
computational overhead — guaranteeing connectedness of
subgraph samples — is smaller than its computational sav-
ings by speeding up convergence. This speed-up is observ-
able if the graph properties that we want to approximate
and that have to be determined in each iteration of our sam-
pling procedure are rather expensive to compute.

Simulated Annealing In our empirical evaluation, Simu-
lated Annealing led to a slightly lower runtime on average,
but also a slight loss in sample quality compared to basic
Metropolis. We investigated why Simulated Annealing is
empirically faster than Metropolis in our setting and no-
ticed that in the first iterations of Simulated Annealing, low
values of p lead to very sparse samples whose graph prop-
erties could be computed more efficiently than those of the
graph samples generated by Metropolis.

Still, Simulated Annealing outperforms on average all
state-of-the-art methods with respect to sample quality
without the need to pick an exponent p.

4. Conclusions
In this article, we have proposed novel approaches to rep-
resentative subgraph sampling. They are based on the key
idea to compute or approximate properties of the original

Representative Subgraph Sampling using Markov Chain Monte Carlo Methods

degree diam clust graphlet AVG tread tprep trun t

RN 0.911 0.653 0.332 0.540 0.487 0.491 0.000 0.008 0.499
RE 0.725 0.633 0.389 0.500 0.449 0.491 0.000 0.009 0.500
FF 0.450 0.455 0.311 0.268 0.297 0.491 0.000 0.004 0.495
FFi 0.340 0.157 0.132 0.280 0.227 0.491 0.000 0.012 0.503
Md 0.105 0.247 0.121 0.143 0.154 0.491 0.001 3.096 3.587
Mc 0.814 0.498 0.072 0.287 0.418 0.491 5.227 2.857 8.575
Mg 0.788 0.531 0.405 0.177 0.475 0.491 64.572 4.430 69.493
Mdcg 0.544 0.326 0.069 0.072 0.253 0.491 69.237 35.088 104.816
M10dcg 0.164 0.220 0.063 0.084 0.132 0.491 62.365 110.277 173.133
MSA

d 0.147 0.252 0.121 0.156 0.169 0.491 0.001 2.613 3.104
MSA

10dcg 0.214 0.256 0.067 0.072 0.147 0.491 69.173 95.761 165.425
Chd 0.182 0.172 0.119 0.077 0.137 0.491 0.001 8.965 9.456
Ch10dcg 0.189 0.149 0.087 0.090 0.129 0.491 63.073 37.257 100.821
ChSA

d 0.204 0.139 0.139 0.086 0.142 0.491 0.000 8.830 9.321
ChSA

10dcg 0.221 0.181 0.111 0.065 0.148 0.491 62.993 32.923 96.407

Table 1. Distances between properties of subgraph sample and original graph (n′ = 100). Each row is a sampling strategy, each column
a graph property used for evaluation (left of the double bar). Numbers are distances between subgraph sample and original graph (Left
columns). Runtimes for each method are given in seconds (Right columns). For full details on all abbreviations see Section 3.

graph G, which are then to be approximated well by the
sample graph G′. While existing sampling algorithms man-
age to produce good samples with a minimum size of 15%
(of nodes of the original graph) (Leskovec & Faloutsos,
2006), our algorithms succeed in constructing representa-
tive samples of smaller size (down to 0.14% on Epinions).

References
Leskovec, J., & Faloutsos, C. (2006). Sampling from large

graphs. KDD.

Metropolis, N., Rosenbluth, A., Rosenbluth, N., & Teller,
A. (1953). Equation of state calculations by fast comput-
ing machines. The Journal of Chemical Physics, Volume
21, Number 6 (pp. 1087–1092).

