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Abstract

We present an efficient, principled, and inter-
pretable technique for inferring module as-
signments and for identifying the optimal
number of modules in a given network, based
on variational Bayesian inference for stochas-
tic block models. We show how our method
extends previous work and addresses the
“resolution limit problem”. We apply the
technique to synthetic and real networks.

Large-scale networks describing complex interactions
among a multitude of objects have found application in
a wide array of fields, from biology to social science to
information technology (Watts & Strogatz, 1998; Al-
bert & Barabási, 2002). In these applications one often
wishes to model networks, suppressing the complexity
of the full description while retaining relevant infor-
mation about the structure of the interactions (Ziv
et al., 2005). One such network model groups nodes
into modules, or “communities,” with different densi-
ties of intra- and inter- connectivity for nodes in the
same or different modules. We present here a com-
putationally efficient Bayesian framework for inferring
the number of modules, model parameters, and mod-
ule assignments for such a model.

The problem of finding modules in networks (or “com-
munity detection”) has recently received much atten-
tion in both the physics and machine learning litera-
ture. Most approaches in the physics literature (New-
man & Girvan, 2004; Reichardt & Bornholdt, 2006;
Hastings, 2006) rely on optimizing an energy-based
cost function with fixed parameters over possible as-
signments of nodes into modules. The particular cost
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functions vary, but most compare a given node parti-
tioning to an implicit null model, the two most pop-
ular being the configuration model and a limited ver-
sion of the stochastic block model (SBM) (Holland &
Leinhardt, 1976). It was recently shown that the “ad-
hoc” choice of fixed parameters for these cost functions
gives rise to the “resolution limit problem” (Fortunato
& Barthélemy, 2007; Kumpula et al., 2007), wherein
the parameter choice sets a lower limit on the size of
detected communities as a function of the size of the
network. We suggest a solution to this problem that
relies on inferring the model parameters as opposed to
asserting them a priori.

In tandem with this work, there has been progress
in machine learning approaches for relational data,
under both maximum likelihood (Newman & Leicht,
2007; Hugo Zanghi & Miele, 2007) and maximum ev-
idence (Nowicki & Snijders, 2001; Kemp et al., 2004;
Airoldi et al., 2007; Xu et al., 2007; Sinkkonen et al.,
2007) frameworks for SBMs and related (but gener-
ally more complicated) models. While maximum like-
lihood methods infer model parameters, they provide
only point estimates and as such are prone to over-
fitting; complexity control – determining the number
of modules – must be handled separately, by, e.g., the
Bayesian Information Criterion, an uncontrolled ap-
proximation which is only asymptotically appropriate.
Maximum evidence techniques, however, infer distri-
butions over model parameters and, as such, automat-
ically penalize overly-complex models. Many of the
models studied under a maximum evidence framework
are quite complex and, as such, approximate inference
is performed with sampling techniques that are com-
putationally costly. We study a simple but effective
SBM which generalizes (Hastings, 2006) and is a spe-
cial case of the models used in (Nowicki & Snijders,
2001; Kemp et al., 2004; Airoldi et al., 2007). We
use a variational approach for approximate maximum
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evidence inference that results in a computationally
efficient and interpretable algorithm for module dis-
covery.

Figure 1. Results for the resolution limit test suggested in
(Fortunato & Barthélemy, 2007; Kumpula et al., 2007).
Our method correctly infers all 15 modules (indicated by
the shape and color of nodes), whereas NG modularity op-
timization (Newman & Girvan, 2004) incorrectly groups
pairs of neighboring cliques together.

We specify an N -node network by its adjacency ma-
trix A, where Aij = 1 if there is an edge between
nodes i and j and Aij = 0 otherwise, and define zi ∈
{1, . . . ,K} to be the unobserved module membership
of the ith node. We denote the set of latent variables
as Z = {zi}N

i=1. We use a constrained SBM which con-
sists of a multinomial distribution over module assign-
ments with weights πµ ≡ p(zi = µ|~π) and Bernoulli
distributions over edges contained within and between
modules with weights θ+ ≡ p(Aij = 1|zi = zj , ~θ) and
θ− ≡ p(Aij = 1|zi 6= zj , ~θ), respectively. In short, to
generate a random undirected graph under this model
we roll a K-sided die (biased by ~π) N times to deter-
mine module assignments for each of the N nodes; we
then flip one of two biased coins (for either intra- or
inter- module connection, biased by θ+ or θ−, respec-
tively) for each of the N(N − 1)/2 pairs of nodes to
determine if the pair is connected. We take beta and
Dirichlet distributions as conjugate priors over ~θ and
~π, respectively.

Given the data (an adjacency matrix for a particular
network), we evaluate the Bayesian evidence by inte-
grating over all parameter and latent variable settings:

p(A|K) =
∑
Z

∫
dΘ p(A, Z|Θ,K)p(Θ|K) (1)

While this method can, in principle, be used to eval-
uate the evidence for networks of arbitrary size, run-
times scale too quickly with N be practically applica-
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Figure 2. Results of the resolution limit test, implemented
for a range of true number of modules, Ktrue, the num-
ber of 4-node cliques in the ring-like graph. Note that
our method, represented by green squares, correctly infers
the number of modules K∗ over the entire range of Ktrue,
while NG modularity initially finds the correct number of
modules but undergoes a sharp transition at Ktrue = 15
(corresponding to Fig. 1), after which neighboring cliques
are grouped together.

ble for real-world networks. To accommodate large-
scale networks for which exact calculation of the evi-
dence is computationally intractable, we use a varia-
tional Bayes approach (Jordan et al., 1999) that arises
from the following identity:

ln p(A) =
〈

ln
p(A, Z, Θ)
q(Θ, Z)

〉
q

+ DKL (q(Θ, Z)||p(Θ, Z|A)) , (2)

where q(Θ, Z) is an arbitrary distribution and DKL

is the Kullback-Leibler divergence (conditional depen-
dence on K has been suppressed for brevity). One
replaces the calculation of the log-evidence by that
of an approximate free energy (the expected value
to the right of the equal sign), which approaches the
log-evidence as q(Θ, Z) approaches the true (and un-
known) posterior. To make optimization of the free en-
ergy tractable, we take a mean-field approach, assum-
ing the form q(Θ, Z) = qΘ(Θ)

∏N
i=1 qi(zi). Optimizing

the free energy as a functional of qΘ and qi results
in an iterative coordinate ascent algorithm that pro-
duces approximations to the posterior p(Θ, Z|A,K)
and the evidence p(A|K). The steps in the result-
ing algorithm involve sparse matrix multiplication of
N -by-N and N -by-K matrices and the evaluation of
digamma functions, allowing for very fast implementa-
tion – e.g. runtime for one run of variational Bayes on
a synthetic network of N = 105 nodes and K = 4 mod-
ules is ∼ 40 seconds in MATLAB on a 2GHz laptop;
we note that successful inference may require several
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such runs to find a global (and not local) optimum of
the free energy. We add that variational inference is
typically more computationally efficient than sampling
approaches, often without a sizeable difference in per-
formance, as shown in the related work by (Xu et al.,
2007).
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Figure 3. Test of robustness on synthetic data. For each
value of θ+ and θ−, 5 random networks of N = 128 nodes
and K = 4 modules are sampled from from the genera-
tive model, p(A, Z|Θ, K), where πµ = 1

4
for all samples.

The algorithm is run on each network and the average mu-
tual information between the latent module assignments,
Z, and inferred module assignments, Z∗, is shown. The
mutual information is computed as in (Danon et al., 2005).

We validate the method with synthetic data and ap-
ply it to an example real-world network. Fig. 1 and
Fig. 2 show that our method overcomes the resolu-
tion limit (Fortunato & Barthélemy, 2007; Kumpula
et al., 2007) faced by other methods (Newman & Gir-
van, 2004; Reichardt & Bornholdt, 2006; Hastings,
2006). Our method infers distributions over model
parameters and correctly identifies the 4-node cliques
as modules, whereas other methods require one to as-
sert fixed parameter values and, as a result, incorrectly
group neighboring cliques together.

Fig. 3 shows the performance of our method on syn-
thetic networks sampled from the generative model,
p(A, Z|Θ,K), for a range of θ+ and θ− values. The al-
gorithm successfully identifies the modular structure of
the synthetic networks when such structure exists: for
assortative modules in which θ+ is sufficiently larger
that θ−, the latent and inferred module assignments
are essentially identical; for θ+ ≈ θ− ≈ 0.5 the net-
works are approximately Erdős-Reýni random graphs,
for which no modular structure is present.

Fig. 4 shows the giant component (∼7000 authors)
of the American Physical Society March meeting 2008
co-authorship network. The ith author is represented

by the ith row and ith column in this matrix, and the
ith and jth authors are connected if they co-authored
a conference paper together. The rows and columns
of the adjacency matrix are sorted by the results of
our algorithm, revealing strong community structure
which corresponds to well-defined sub-disciplines.

Figure 4. An analysis of the giant component of the co-
authorship network compiled from the APS March meeting
2008, revealing strong community structure which corre-
sponds to well-defined sub-disciplines, e.g. the two largest
communities correspond to superconductor theorists and
experimentalists.

In explicitly considering modular network models in a
generative framework we have exploited Bayesian tech-
niques to infer posterior distributions over model pa-
rameters and module assignments from the data, while
simultaneously performing complexity control to au-
tomatically determine the number of modules a given
network permits. We used a variational approach to
arrive at suitable approximations for the quantities of
interest. The developed techniques are principled, in-
terpretable, computationally efficient, and lend them-
selves to future generalizations (including model selec-
tion between competing network models).
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Kumpula, J., Saramäki, J., Kaski, K., & Kertész, J.
(2007). Limited resolution in complex network com-
munity detection with potts model approach. Eur.
Phys. J. B, 56, 41–45.

Newman, M., & Girvan, M. (2004). Finding and eval-
uating community structure in networks. Phys. Rev.
E, 69, 026113.

Newman, M. E. J., & Leicht, E. A. (2007). Mixture
models and exploratory analysis in networks. PNAS,
104, 9564–9569.

Nowicki, K., & Snijders, T. (2001). Estimation and
prediction for stochastic blockstructures. Journal of
the American Statistical Association, 96, 1077–1087.

Reichardt, J., & Bornholdt, S. (2006). Statistical me-
chanics of community detection. Phys. Rev. E, 74,
016110.

Sinkkonen, J., Aukia, J., & Kaski, S. (2007). Inferring
vertex properties from topology in large networks.
In MLG 2007.

Watts, D. J., & Strogatz, S. H. (1998). Collective
dynamics of ’small-world’ networks. Nature, 393,
440–2.

Xu, Z., Tresp, V., Yu, S., Yu, K., & Kriegel, H. (2007).
Fast inference in infinite hidden relational models.
In MLG 2007.

Ziv, E., Middendorf, M., & Wiggins, C. H. (2005).
Information-theoretic approach to network modu-
larity. Phys. Rev. E, 71, 046117.


