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1. Introduction 1994).

The central task in graph mining is to find subgraphs, The main contributions of this paper are: (1) We ex-
calledpatternsthat occur frequently in either a collection tend the anti-monotonicity results of Vanetik, Gudes and
of graphs, or in one large graph. Especially in the single-Shimony to all24 combinations of iso-, homo-, or homeo-
graph setting, the notion of frequency, however, is notlat almorphism, on labeled or unlabeled, directed or undirected
straightforward. For example, theiua solution of taking ~ graphs, with edge- or vertex-overlap. (2) We show that
the number of instances of the pattern as its frequency heginder reasonable assumptions) ti@ximum independent
the undesirable property that extending a pattern (i.ek; ma set measuréMIS) of Vanetik, Gudes and Shimony (2006)
ing it more restrictive), may increase its frequency. Henceis the smallest anti-monotonic measure in the class of
as pointed out by Vanetik, Gudes and Shimony (2006), ®verlap-graph based frequency measures. We also intro-
good frequency measure must &eti-monotonici.e., the  duce the newminimum clique partition measurgMCP)
frequency of a super-pattern may not be higher as that ovhich represents the largest possible one. (3) In general,
a subpattern. Not only the correctness, but also the effiboth the MIS and the MCP measure are NP-hard in the size
ciency of most existing graph pattern miners relies criti-Of the overlap graph. We introduce the polynomial time

cally on this property, as it allows for pruning large parts o computable Lovasz measure, which is is sandwiched be-
the search space. tween the former two, and show that is anti-monotonic.

An important class of anti-monotonic support measures o .
in the single graph setting is based on the notion of an over2- Preliminaries
lap graph — a graph in which each vertex corresponds to Graphs A graph G = (V,E) is a pair in whichV
a match of the pattern and two vertices are connected big a (non-empty) set oferticesor nodesand E is either
an edge if the corresponding matches overlap. Vanetika set ofedgesF C {{v,w} | v,w € V} or a set of
Gudes and Shimony proved necessary and sufficient corarcs E C {(v,w) | v,w € V}. In the latter case we
ditions for anti-monotonicity in the single, labeled graph call the graphdirected A labeled graph is a quadruple
setting, in which the vertices of the overlap graph repre-G = (V, E, %, \), with (V, E) a graph,Y; a non-empty fi-
sent subgraphs of the data set isomorphic to the pattermjte, totally ordered set of labels, anda functionV — X
and the edges represent edge overlap (2006) between thgsigning labels to the vertices. We will use the notation
subgraphs. V(G), E(G) and \¢ to refer to the set of vertices, the set

In the context of graph mining, however, not only sub- of arcs (edges) and the labeling function of a gréptre-
graph isomorphism and labeled graphs are important. Ogpectively. ByG, we denote the class of all graphs; Gy
the one hand, the importance of homeomorphic base{ ™), the restriction to directed (undirected) graphs; and
graph mining increased drastically with the study of bio-by G (G.) the restriction to labeled (unlabeled) graphs. We
logical networks (Bandyopadhyay et al., 2006; Grunewaldoften combine notation; e.gg,” for directed, unlabeled
et al., 2007). On the other hand, in applications where vergraphs.
tices can play several roles (e.g. social networks) homo- Morphisms The following concepts introduced in terms
morphism is more suitable. Homomorphism in the con-of Gy~ are also valid for undirected and/or unlabeled graphs
text of data mining has been thoroughly investigated in theby dropping the direction of the edges and/or the labels of
field of inductive logic programming (Muggleton & Raedt, the vertices.
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A homomorphismr from H = (Vy,Ey,X, Agy) to
G = (V,E,X,)\) is a mapping fron¥y — V, such that
V(v,w) € Ep : (n(v),7(w)) € E. We say thatH is
homomorphic ta= and writeH — G.

An isomorphismfrom H to G is a bijective homomor-
phismz from H to G such tha{v, w) € E(H) if and only
if (m(v),7(w)) € E(G). In that case, we say th# is
isomorphic toG and writeH = G.

A path of lengthk in G is a sequence of ver-
tices (vo,...,vx) with (v;_1,v;) € E. The vertices
v1,...,vx_1 are called thénnervertices and, v;, theend
vertices of the path. Two pathg and P, of G are called
disjoint or independenif no inner node ofP; is in P, and
vice versa. The set of all paths 6fis denotedP, and of
all paths with end vertices andw, P (v, w). A subgraph
homeomorphism from H to G is a pair of injective map-
pings fromV (H) — V(G) and fromE(H) — Pg, such
thatV(v,w) € E(H):

(v, w)) € P (n(v), 7(w))A

Vo € m((v,w)) :Vy € V(G) \ {v,w} : 7(y) # z,
and¥(v,w), (z,y) € E(H):

(v,w) # (z,y) = 7((v,w)) andw((z,y)) disjoint (La-

Paugh & Rivest, 1978).

By H, Z and O, we denote the class of graph homomor-

corresponds to &-match of the patter® and two vertices
are connected if the correspondiigmatches have an-
overlap.

Note that}, is always undirected and that the edges de-
pend on the used notion of overlap. For example, will
be denser for vertex-overlap than for edge-overlap because
the latter implies the former.

Vanetik, Gudes and Shimony (2006) consider three op-
erations on the overlap grajgh,: clique contraction, edge
removal and vertex addition, as defined below.

Definition 5. Let K C G be a clique inG = (V, E).
The clique contractionCC(G, K) yields a new graph
G' = (V',E")inwhichK C G isreplaced by a new vertex
k ¢ V adjacentto{w | Vv € V(K) : {v,w} € E}:

V' = V\V(K)U{k}

B = E\{{v,w}|{v,u}nV(K)+#0}

U{{k,w} |V € V(K):{v,w} € E}.
Theedge removakR(G, ¢) of the edge: = {v, w} in the
graphG = (V, E) yields a new graph

G' = (V,E\{{v,w}}).
The vertex additionVA(G, v) of the vertexw ¢ V in the
graphG = (V, E) yields a new graph

G =VU{v}, EU{v,w}|weV}).

phisms, isomorphisms and homeomorphisms, respectively. The rationale behind these operations is that Ahe

We callr surjectiveif Vo' € V(G) andve’ € E(G):
[(FueV(H): vV =n())V(Iec E(H) : v €m(e))]
AN[Zee€ E(H): ¢ € n(e)).
Iffor # : H — G € {H,Z,0} it holds thatAy (v) =
Ag(m(v)), we callw label-preserving We will always im-
plicitly assume that is label-preserving wheH, G € G,.

3. Support measures and overlap graphs

Definition 1. Consider a pattern” € G5 and a single
graph G € G§, a € {—,<}, B € {\e}. Asup-
port measureon G5 is a function f that maps(P, G) to
f(P,G) e N. f(P,Q) is called thesupport ofP in G.
Definition 2. A support measur¢ on G§ is anti-monoto-
nicif vP,G € G VpC P: f(P,G) < f(p,G).
Definition 3. LetK € {H,Z,0}andP,G € G5, a € {—
y—h B e {N e}

A K-match of P in G is a minimal subgraply C G, for
which there exists a surjective mappimge XC from P to g.

Most anti-monotonic measures are based on the notio

of anoverlapgraphG}, (Vanetik et al., 2006; Kuramochi
& Karypis, 2005)

Definition 4. Let P,G € G§, a € {—, <}, B € {A, o},
v € {vertex, edgeandK € {H,Z, O}. Two subgraphg;
and g» of G have avertex-overlagf V(g;) N V(g2) # 0
and anedge-overlagf E(g;) N E(g2) # 0.

The K-y-overlap graphG), of a patternP in the dataset

~-overlap graph ofP can be transformed into thi€-~-
overlap graph op by means of these operations (Vanetik
et al., 2006).

Definition 6. A graph measuris a functionf : G;> — N.
Leto be a graph operation that transforms a graphinto
a grapho(G). A graph measurg is increasingundero if
and only itVG € G : f(G) < f(o(@)).

Leta € {—, <}, 8 € {\ o}, v € {vertex, edgk and
K € {H,Z,0}. A support measurg on Gg is a K-v-
overlap measuren Gg, if there exists a graph measufe

suchthatvVP, G € G : f(P,G) = f(G}).

The following theorem was originally proved by
Vanetik, Gudes and Shimony (2006) far € {—, <},
K = Z andy = edge and its generalization to the com-
plete space defined by the parameterg, X and~ is our
main result:

Theorem 7. Let a € {—,<}, B € {) e}, K €
ﬁ;], H, O}, andy € {vertex, edgg.
Any KC-y-overlap measurgf on G5 is anti-monotonic if

and only if the associated graph measiftés increasing
underCC, ER andVA.

4. Minimal, maximal and PTIME overlap
measures

Let G = (V(G), {{v,w} | v,w € V}\ E(Q)), denote

G is an undirected, unlabeled graph in which each vertexthe complement graph @f € G;”. E.g., for thecomplete
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Interestingly,M1S and M CP turn out to be the minimal
and the maximal possible meaningful overlap measures:

Theorem 10. Let £ € {Z,H,0}, v € {vertexedgsg,
a € {—, <}, andp € {)\, o}. For every meaningfutC-~-
overlap measurg’ on Gg, and everyP, G € Gg, it holds
that: MIS(P,G) < f(P,G) < MCP(P,G) .

Figure 1.Left: PatternsP, p and a graplG. The 5Z-matches of

P in G are indicated by the image ifi of the edge inP outside Unfortunately, both MIS and MCP are known to be NP-
the triangle. Right: Th&-vertex-overlap grapliry with a MCP  hard to compute in the size of the overlap graph. A well-
(dashed ellipses) and a MIS (white vertices). known measure that is sandwiched between the MIS and

the MCP and that can be computed in polynomial time,
) is the theta or Lovasz function (Knuth, 1994). There are
graphon k vertices, Ky = ({v1, ..., vk}, {{vi,v;} | 1 < geveral equivalent characterizations of this function.eOn
i #j < k}), Ky is the graph witht isolated vertices. We  yefinition is: 0(G) = ming Amax(A), WhereAmax (A) de-
call an overlap measugemeaningfulfitis anti-monotonic  notes the largest eigenvalue of matband the minimum
and assigns the frequenkyo k non-overlapping matches, s taken over all feasible matrices such thatAT = A,
e, f(Kk) = k. Ay =1andA;; = 1if (i,5) € E(QG).

An independent seif G is a subsef of V(&) such that
Yo,w e I :{v,w} ¢ E(G). A maximum independent set
(MIS) of G is an independent set of maximum cardinality
and its size is notated asis(G). Up to now, all meaning- References
ful overlap measureg we are aware of aré/IS-measures, Bandyopadhyay, S., Sharan, R., & Ideker, T. (2006). Sys-

Theorem 11. 6 is a meaningful overlap measure.

i.e., the support of (P, G) = mis(G}). MIS was intro- tematic identification of functional orthologs based on
duced and proven to be anti-monotonic in (Vanetik et al., Protein network comparisonGenome Res16, 428
2006). 435.
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Definition 8. A clique partitionof G € G.~ is a parti-
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mep(G). The MCP-measurds defined byMCP(P, G) :

(P,G) — mep(Gp). Knuth, D. E. (1994). The sandwich theoreilectron. J.
Theorem 9. The MCP-measure is meaningful. Combin 1.
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It is interesting to compard/CP with MIS. Let x(G) Kuramochi, M., & Karypis, G. (2005). Finding frequent
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Firs, tis known thanep (G) = (@) andmis(G) = [MEOMOTBIIS problerSTOC 78(pp. 40-50). New
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Consequentlymep(G) > mis(G),VG € G;7, since the  Muggleton, S., & Raedt, L. D. (1994). Inductive logic pro-
size of a maximum clique is an lower bound for the chro-  gramming : Theory and methoddournal of Logic Pro-
matic number. Informally, it is easy to see why this is so:  gramming 19,2Q 629-679.

letVy, ..., V., bean MCP and a MIS forG. We know that

I contains at most one vertex of eachV;, 1 < i < k. In  Vanetik, N., Shimony, S. E., & Gudes, E. (2006). Support
other words, to decide whether we can include a match of measures for graph datBata Min. Knowl. Discov.13,
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matchw;, which must be independent of all chosgre V;.

MCP, however, allows us to count a matchWhas soon

there isa match inV; which does not overlap with match

in V;. Thatis, we can make another choice for edéhV;)

pair (see Figure 1 for a concrete example).



