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1. Introduction
The central task in graph mining is to find subgraphs,

calledpatternsthat occur frequently in either a collection
of graphs, or in one large graph. Especially in the single-
graph setting, the notion of frequency, however, is not at all
straightforward. For example, the naı̈ve solution of taking
the number of instances of the pattern as its frequency has
the undesirable property that extending a pattern (i.e., mak-
ing it more restrictive), may increase its frequency. Hence,
as pointed out by Vanetik, Gudes and Shimony (2006), a
good frequency measure must beanti-monotonic, i.e., the
frequency of a super-pattern may not be higher as that of
a subpattern. Not only the correctness, but also the effi-
ciency of most existing graph pattern miners relies criti-
cally on this property, as it allows for pruning large parts of
the search space.

An important class of anti-monotonic support measures
in the single graph setting is based on the notion of an over-
lap graph — a graph in which each vertex corresponds to
a match of the pattern and two vertices are connected by
an edge if the corresponding matches overlap. Vanetik,
Gudes and Shimony proved necessary and sufficient con-
ditions for anti-monotonicity in the single, labeled graph
setting, in which the vertices of the overlap graph repre-
sent subgraphs of the data set isomorphic to the pattern,
and the edges represent edge overlap (2006) between the
subgraphs.

In the context of graph mining, however, not only sub-
graph isomorphism and labeled graphs are important. On
the one hand, the importance of homeomorphic based
graph mining increased drastically with the study of bio-
logical networks (Bandyopadhyay et al., 2006; Grunewald
et al., 2007). On the other hand, in applications where ver-
tices can play several roles (e.g. social networks) homo-
morphism is more suitable. Homomorphism in the con-
text of data mining has been thoroughly investigated in the
field of inductive logic programming (Muggleton & Raedt,

1994).

The main contributions of this paper are: (1) We ex-
tend the anti-monotonicity results of Vanetik, Gudes and
Shimony to all24 combinations of iso-, homo-, or homeo-
morphism, on labeled or unlabeled, directed or undirected
graphs, with edge- or vertex-overlap. (2) We show that
(under reasonable assumptions) themaximum independent
set measure(MIS) of Vanetik, Gudes and Shimony (2006)
is the smallest anti-monotonic measure in the class of
overlap-graph based frequency measures. We also intro-
duce the newminimum clique partition measure(MCP)
which represents the largest possible one. (3) In general,
both the MIS and the MCP measure are NP-hard in the size
of the overlap graph. We introduce the polynomial time
computable Lovasz measure, which is is sandwiched be-
tween the former two, and show that is anti-monotonic.

2. Preliminaries
Graphs A graph G = (V,E) is a pair in whichV

is a (non-empty) set ofverticesor nodesandE is either
a set ofedgesE ⊆ {{v, w} | v, w ∈ V } or a set of
arcs E ⊆ {(v, w) | v, w ∈ V }. In the latter case we
call the graphdirected. A labeled graph is a quadruple
G = (V,E,Σ, λ), with (V,E) a graph,Σ a non-empty fi-
nite, totally ordered set of labels, andλ a functionV → Σ
assigning labels to the vertices. We will use the notation
V (G), E(G) andλG to refer to the set of vertices, the set
of arcs (edges) and the labeling function of a graphG, re-
spectively. ByG, we denote the class of all graphs; byG→

(G↔), the restriction to directed (undirected) graphs; and
byGλ (G•) the restriction to labeled (unlabeled) graphs. We
often combine notation; e.g.,G→

•
for directed, unlabeled

graphs.

Morphisms The following concepts introduced in terms
of G→

λ are also valid for undirected and/or unlabeled graphs
by dropping the direction of the edges and/or the labels of
the vertices.
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A homomorphismπ from H = (VH , EH ,Σ, λH) to
G = (V,E,Σ, λ) is a mapping fromVH → V , such that
∀(v, w) ∈ EH : (π(v), π(w)) ∈ E. We say thatH is
homomorphic toG and writeH → G.

An isomorphismfrom H to G is a bijective homomor-
phismπ from H to G such that(v, w) ∈ E(H) if and only
if (π(v), π(w)) ∈ E(G). In that case, we say thatH is
isomorphic toG and writeH ∼= G.

A path of length k in G is a sequence of ver-
tices (v0, . . . , vk) with (vi−1, vi) ∈ E. The vertices
v1, . . . , vk−1 are called theinnervertices andv0, vk theend
vertices of the path. Two pathsP1 andP2 of G are called
disjoint or independentif no inner node ofP1 is in P2 and
vice versa. The set of all paths ofG is denotedPG, and of
all paths with end verticesv andw, PG(v, w). A subgraph
homeomorphismπ from H to G is a pair of injective map-
pings fromV (H) → V (G) and fromE(H) → PG, such
that∀(v, w) ∈ E(H):

π((v, w)) ∈ PG(π(v), π(w))∧
∀x ∈ π((v, w)) : ∀y ∈ V (G) \ {v, w} : π(y) 6= x,

and∀(v, w), (x, y) ∈ E(H):
(v, w) 6= (x, y) ⇒ π((v, w)) andπ((x, y)) disjoint (La-

Paugh & Rivest, 1978).

By H, I andO, we denote the class of graph homomor-
phisms, isomorphisms and homeomorphisms, respectively.

We callπ surjectiveif ∀v′ ∈ V (G) and∀e′ ∈ E(G):
[(∃v ∈ V (H) : v′ = π(v)) ∨ (∃e ∈ E(H) : v′ ∈ π(e))]

∧ [∃e ∈ E(H) : e′ ∈ π(e)].
If for π : H → G ∈ {H, I,O} it holds thatλH(v) =
λG(π(v)), we callπ label-preserving. We will always im-
plicitly assume thatπ is label-preserving whenH,G ∈ Gλ.

3. Support measures and overlap graphs
Definition 1. Consider a patternP ∈ Gα

β and a single
graph G ∈ Gα

β , α ∈ {→,↔}, β ∈ {λ, •}. A sup-
port measureon Gα

β is a functionf that maps(P,G) to
f(P,G) ∈ N. f(P,G) is called thesupport ofP in G.

Definition 2. A support measuref onGα
β is anti-monoto-

nic if ∀P,G ∈ Gα
β ∀p ⊆ P : f(P,G) ≤ f(p,G).

Definition 3. LetK ∈ {H, I,O} andP,G ∈ Gα
β , α ∈ {→

,↔}, β ∈ {λ, •}.
A K-match ofP in G is a minimal subgraphg ⊆ G, for
which there exists a surjective mappingπ ∈ K fromP to g.

Most anti-monotonic measures are based on the notion
of an overlapgraphGγ

P (Vanetik et al., 2006; Kuramochi
& Karypis, 2005)

Definition 4. Let P,G ∈ Gα
β , α ∈ {→,↔}, β ∈ {λ, •},

γ ∈ {vertex, edge} andK ∈ {H, I,O}. Two subgraphsg1

and g2 of G have avertex-overlapif V (g1) ∩ V (g2) 6= ∅
and anedge-overlapif E(g1) ∩ E(g2) 6= ∅.
TheK-γ-overlap graphGγ

P of a patternP in the dataset
G is an undirected, unlabeled graph in which each vertex

corresponds to aK-match of the patternP and two vertices
are connected if the correspondingK-matches have anγ-
overlap.

Note thatGγ
P is always undirected and that the edges de-

pend on the used notion of overlap. For example,Gγ
P will

be denser for vertex-overlap than for edge-overlap because
the latter implies the former.

Vanetik, Gudes and Shimony (2006) consider three op-
erations on the overlap graphGγ

P : clique contraction, edge
removal and vertex addition, as defined below.

Definition 5. Let K ⊆ G be a clique inG = (V,E).
The clique contractionCC(G,K) yields a new graph
G′ = (V ′, E′) in whichK ⊆ G is replaced by a new vertex
k /∈ V adjacent to{w | ∀v ∈ V (K) : {v, w} ∈ E}:
V ′ = V \ V (K) ∪ {k}
E′ = E \ {{v, w} | {v, w} ∩ V (K) 6= ∅}

∪ {{k,w} | ∀v′ ∈ V (K) : {v′, w} ∈ E}.
Theedge removalER(G, e) of the edgee = {v, w} in the
graphG = (V,E) yields a new graph

G′ = (V,E \ {{v, w}}).
Thevertex additionVA(G, v) of the vertexv /∈ V in the
graphG = (V,E) yields a new graph

G′ = (V ∪ {v}, E ∪ {{v, w} | w ∈ V }).

The rationale behind these operations is that theK-
γ-overlap graph ofP can be transformed into theK-γ-
overlap graph ofp by means of these operations (Vanetik
et al., 2006).

Definition 6. A graph measureis a functionf̂ : G↔

•
→ N.

Let o be a graph operation that transforms a graphG into
a grapho(G). A graph measurêf is increasingundero if
and only if∀G ∈ G : f̂(G) ≤ f̂(o(G)).

Let α ∈ {→,↔}, β ∈ {λ, •}, γ ∈ {vertex, edge} and
K ∈ {H, I,O}. A support measuref on Gα

β is a K-γ-

overlap measureon Gα
β , if there exists a graph measurêf

such that∀P,G ∈ Gα
β : f(P,G) = f̂(Gγ

P ).

The following theorem was originally proved by
Vanetik, Gudes and Shimony (2006) forα ∈ {→,↔},
K = I andγ = edge and its generalization to the com-
plete space defined by the parametersα, β, K andγ is our
main result:

Theorem 7. Let α ∈ {→,↔}, β ∈ {λ, •}, K ∈
{I,H,O}, andγ ∈ {vertex, edge}.

AnyK-γ-overlap measuref on Gα
β is anti-monotonic if

and only if the associated graph measuref̂ is increasing
underCC, ER andVA.

4. Minimal, maximal and PTIME overlap
measures
Let G = (V (G), {{v, w} | v, w ∈ V } \ E(G)), denote

the complement graph ofG ∈ G↔

•
. E.g., for thecomplete
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Figure 1.Left: PatternsP, p and a graphG. The 5I-matches of
P in G are indicated by the image inG of the edge inP outside
the triangle. Right: TheI-vertex-overlap graphGv

P with a MCP
(dashed ellipses) and a MIS (white vertices).

graphon k vertices,Kk = ({v1, . . . , vk}, {{vi, vj} | 1 ≤
i 6= j ≤ k}), Kk is the graph withk isolated vertices. We
call an overlap measuref meaningfulif it is anti-monotonic
and assigns the frequencyk to k non-overlapping matches,
i.e., f̂(Kk) = k.

An independent setof G is a subsetI of V (G) such that
∀v, w ∈ I : {v, w} /∈ E(G). A maximum independent set
(MIS) of G is an independent set of maximum cardinality
and its size is notated asmis(G). Up to now, all meaning-
ful overlap measuresf we are aware of areMIS -measures,
i.e., the support off(P,G) = mis(Gγ

P ). MIS was intro-
duced and proven to be anti-monotonic in (Vanetik et al.,
2006).

We introduce a new anti-monotonic overlap measure, in-
spired by theCC-operation:

Definition 8. A clique partitionof G ∈ G↔

•
is a parti-

tioning of V (G) into {V1, . . . , Vk} such that eachVi in-
duces a clique inG. A minimum clique partition(MCP)
is a clique partition of minimum size. Its size is denoted
mcp(G). TheMCP -measureis defined byMCP(P,G) :
(P,G) → mcp(Gγ

P ).

Theorem 9. TheMCP -measure is meaningful.

It is interesting to compareMCP with MIS . Let χ(G)
be thechromatic numberof G, i.e., the minimal number of
colors to color the vertices ofG such that no two vertices
with the same color are adjacent, and letω(G) be theclique
number; the size of the largest clique inG.

First, it is known thatmcp(G) = χ(G) andmis(G) =
ω(G) (see, e.g., (Gross & Yellen, 2004), section 5.5.1).
Consequently,mcp(G) ≥ mis(G),∀G ∈ G↔

•
, since the

size of a maximum clique is an lower bound for the chro-
matic number. Informally, it is easy to see why this is so:
letV1, . . . , Vk be an MCP andI a MIS forG. We know that
I contains at most one vertexvi of eachVi, 1 ≤ i ≤ k. In
other words, to decide whether we can include a match of
Vi, MIS forces us to choose either no match or exactly one
matchvi, which must be independent of all chosenvj ∈ Vj .
MCP , however, allows us to count a match inVi as soon
there isa match inVi which does not overlap witha match
in Vj . That is, we can make another choice for each(Vi, Vj)
pair (see Figure 1 for a concrete example).

Interestingly,MIS andMCP turn out to be the minimal
and the maximal possible meaningful overlap measures:

Theorem 10. Let K ∈ {I,H,O}, γ ∈ {vertex, edge},
α ∈ {→,↔}, andβ ∈ {λ, •}. For every meaningfulK-γ-
overlap measuref on Gα

β , and everyP,G ∈ Gα
β , it holds

that: MIS (P,G) ≤ f(P,G) ≤ MCP(P,G) .

Unfortunately, both MIS and MCP are known to be NP-
hard to compute in the size of the overlap graph. A well-
known measure that is sandwiched between the MIS and
the MCP and that can be computed in polynomial time,
is the theta or Lovasz function (Knuth, 1994). There are
several equivalent characterizations of this function. One
definition is: θ(G) = minA λmax(A), whereλmax(A) de-
notes the largest eigenvalue of matrixA and the minimum
is taken over all feasible matricesA such thatA⊤ = A,
Aii = 1 andAij = 1 if (i, j) 6∈ E(G).

Theorem 11. θ is a meaningful overlap measure.
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