
Probabilistic models for the dynamics of tree-structured data

Nilesh Dalvi ndalvi@yahoo-inc.com

Fei Sha feisha@yahoo-inc.com

Philip Bohannon plb@yahoo-inc.com

Abstract

Many information sources on the web are
generated by scripts and are highly struc-
tured, e.g., a movie website like IMDB. While
these documents share a common HTML tree
structure (or XML schema), the structure is
not static and changes over time. The tempo-
ral changes tend to break many information
extraction tools such as Wrappers which de-
pend on precise knowledge of the structures.

In this paper, we investigate how to model
the temporal changes. We view the changes
to the tree structure as suppositions of a se-
ries of edit operations: deleting nodes, insert-
ing nodes and substituting labels of nodes.
The tree structures evolve by choosing these
edit operations stochastically. We give algo-
rithm to learn the probabilistic model from
training examples that contain pairwise col-
lections of past and present website HTML
documents. The learnt probabilistic mod-
els can be used to evaluate the robustness
of different information extraction tools. We
demonstrate the effectiveness of this strategy
in choosing robust wrappers on synthetic and
real HTML document examples.

1. Introduction

A large fraction of information available on the Web
is generated by scripts and is highly structured, e.g.
academic repositories, product catalogs and entertain-
ment sites. In many cases, the structure can be rep-
resented as an XML document tree. Figure 1 displays
a simplified example of such trees for movie pages on
a popular movie database site. Tree structures can be
greatly exploited for information extraction. For in-
stance, to extract the director names from each movie,

Appearing in the 6 th International Workshop on Mining
and Learning with Graphs, Helsinki, Finland, 2008.

[width=80%]

Title: Godgather Director Coppola Runtime 118min

td td td td

table

div

body

title

head

tdtd

table

div

html

Godfather

[class=’content’]

Figure 1. An HTML Webpage

we can use the following XPath expression,

W1 ≡ /html/body/div[2]/table/td[2]/text()

which is a specification on how to traverse trees. In
particular, the XPath expression W1 above starts from
the root, follows the tags html, body, the second div

under body, table under it, the second td under table
and then the text() under it.

The path expression W1 is often called a wrapper. Us-
ing wrappers to extract information from structured
pages has been an effective and dominant strategy.
Wrappers can be handcrafted. However, in many
cases, wrappers are inducted from a small number of
labeled examples. Wrapper induction techniques have
been extensively studied (Kushmerick et al., 1997;
Muslea et al., 1998; Hsu & Dung, 1998; Crescenzi
et al., 2001; Han et al., 2001; Sahuguet & Azavant,
1999; Baumgartner et al., 2001; Myllymaki & Jack-
son, 2002; Anton, 2005).

While wrapper induction is an effective way to extract
information, it suffers from a fundamental problem:
the underlying webpages frequently change, often very
slightly, but causing the wrapper to break and requir-
ing them to be relearnt. For instance, consider the
wrapper W1 above. It breaks if the structure of the
underlying webpages change in any of the following
way: a new div section gets added before the content
section, or the first div is deleted or merged with the
second div, a new table or tr is added under the sec-
ond div, the order of Director and Runtime is changed,
a new font element is added, and so on. Websites are

Probabilistic models for the dynamics of tree-structured data

constantly going through small edits and the breaking
of wrappers is often an annoying issue.

Fortunately, there are often several wrappers that
can extract the same information. We can choose
among them a robust one with respect to small web-
site changes. For example, each of the following XPath
expressions extracts the director names:

W2 ≡ //div[@class =′ content′]/ ∗ /td[2]/text()

W3 ≡ //table[@width =′ 80%′/td[2]/text()

W4 ≡ //text()[preceding− sibling :: ∗[1]

[text() =′ Director′]

Each of them can be argued to be more robust than
W1. For example, the wrapper W2 works even if new
div tags are added or the content div is moved to a
different part of the tree. However, which one among
W2, W3 and W4 should we choose?

One selection criteria is to choose the wrapper that
has the least expected failure. Namely,

W ∗
S = arg max

W∈WS

∑

T

succ(W, T)PS(T) (1)

where WS is the set of candidate wrappers learned on
the current tree S, PS(T) is the probability of the cur-
rent tree S getting modified to tree T and the predicate
succ is 1 if the wrapper W can successfully extract in-
formation from T . In this paper, we address the
problem of learning probabilistic models of tree struc-
ture changes. In particular, we propose a model of tree
structure change. The model is defined with three ele-
mentary edit operations, tree node deletion, insertion
and substitution, each with a probability. Edit opera-
tions are carried out step-wize and form a memoryless
Markov chain.

2. XML data model

Webpages can be viewed as XML documents, which we
define next. Let N be the set of nodes which is infinite
so as to accommodate arbitrarily large documents. Let
Σ denote a finite set of labels. An XML document T
is an ordered tree with nodes from N along with a
function L that maps nodes of T to elements from Σ.

A forest F is a finite ordered list of trees. Let [u]
denote the subtree of F rooted at u and let ⌊u⌋ denote
the forest obtained from [u] by deleting u.

3. Probabilistic model of XML

structure change

Webpages undergo constant but generally small
changes over time. These change reflect updates to

either information (adding, removing or editing) or
stylistic elements such as font change. In either case,
the tree structures of the new documents are differ-
ent from old ones, identifiable by adding and remov-
ing subtrees, changing node labels and etc. Note that
what kinds of changes to be made at any given time
are not deterministic, not only varying among websites
but also varying among types of contents.

We propose to characterize the stochastic process that
changes a tree S and generates a new tree T with
a memoryless transducer. We begin describing this
transducer in details in below, followed by a discus-
sion on the inference problem in the transducer.

3.1. The XML tree edit transducer

While we are interested in XML tree structures, we
find that it is more convenient to describe the stochas-
tic process of tree changes in the more general term of
forests. Let π be the process of changing a forest F to
another forest G. The process π is defined recursively
using two subprocesses πins and πds as follows.

Let F1, F2, · · · , FK be the trees in F . Then

π(F) = πins(πds(F1) · · ·πds(Fk)) (2)

where πins recursively maps a forest U to another for-
est V

πins(U) =

{

U with probability pstop

πins(e1(U)) with the rest probability

where e1(U) is an insert operation that adds a node
at the top of U chosen randomly from all such opera-
tions. Specifically, e1(U) first chooses randomly a label
l ∈ Σ with probability pins(l) and creates a new node.
Then it chooses uniformly a random subsequence of
[1..K] as children of the new node. Furthermore, the
probability pins(l) is normalized

∑

l∈Σ
pins(l) = 1.

The operator πds maps a tree S to a forest. It either
deletes or substitutes the root of the tree and recur-
sively transforms the subtrees of the tree S. Given a
tree S with root s, we have

πds(S) =

{

π(⌊s⌋) with probability pdel(L(s))

e2(π(⌊s⌋)) with the rest probability

where e2(U) is an insertion operation that creates a
new root node whose children are all trees returned by
π(⌊s⌋). The label l of the new root is chosen randomly
with probability psub(L(s), l). Notes that, we require
∑

l psub(L(s), l) = 1.

To summarize, the generative process π is
characterized by following parameters Θ =

Probabilistic models for the dynamics of tree-structured data

(pstop, {pdel(l)}, {pins(l)}, {psub(l1, l2))} for l, l1, l2 ∈ Σ
along with the following conditions:

0 < pstop < 1
0 ≤ pdel(l) ≤ 1

pins(l) ≥ 0,
∑

l pins(l) = 1
psub(l1, l2) ≥ 0,

∑

l2
psub(l1, l2) = 1

(3)

Let PF (G) denote the probability that the process π
applied to forest F stops and results in forest G. It is
easy to show that:

Theorem 1 If Θ satisfies all the conditions in eq. (3),
then PF (G) is a probability distribution on the set of
all forests, i.e.

∑

G PF (G) = 1.

3.2. Inference

For the XML tree edit transducer described in the
above section, one important inference problem is to
compute PS(T) = Pr[π(S) = T], ie, the probability
of the current tree S changing into the tree T . We
show below that this probability can be computed by
dynamic programming.

Let Fs and Ft be subforest of S and T respectively. Let
DP1(Fs, Ft) denote the probability that π(Fs) = Ft.
Let u and v denote the roots of the rightmost trees
in Ft and Ft respectively. Note that every node in
Ft is either newly created by some πins operator or
is the result of a substitution by some πsub operator
from some node in FS . Let DP2(Fs, Ft) denote the
probability that π(Fs) = Ft and v was generated by a
substitution under π.

We next show how to compute DP1 and DP2 recursively.
Consider DP1(Fs, Ft). There are two cases: (i) The
node v was the result of an insertion by πins operator.
Let p be the probability that πins inserts the node v
in Ft − v to form Ft. Then, the probability of this
case is DP1(Fs, Ft − v) ∗ p. (ii) The node v was the
result of a substitution. The probability of this case is
DP2(Fs, Ft). Hence, we have

DP1(Fs, Ft) = DP2(Fs, Ft) + p ∗ DP1(Fs, Ft − v) (4)

Now consider DP2(Fs, Ft). Again, there are two cases:
(i) v was substituted for u. In this case, we must have
Fs − [u] transform to Ft − [v] and ⌊u⌋ transform to
⌊v⌋. Denoting psub(label(u), label(v)) with p1, the to-
tal probability of this case is p1 ∗ DP1(Fs − [u], Ft −
[v]) ∗ DP1(⌊u⌋, ⌊v⌋). (ii) v was substituted for some
node other than u. Then, it must be the case that u
was deleted. Denoting pdel(label(u)) with p2, the to-
tal probability of this case is p2 ∗ DP2(Fs − u, Ft − v).

Hence,

DP2[Fs, Ft] = p1DP1(Fs − [u], Ft − [v])DP1(⌊u⌋, ⌊v⌋)

+ p2DP2(Fs − u, Ft − v) (5)

The functions DP1 and DP2 can be computed using a
dynamic programming using Equation (4) and (5). We
do not need to compute these functions for all pairs
of subforests of S and T . We only need to compute
them for special subforests as defined by Zhang and
Shasha (Zhang & Shasha, 1989), who also show that
the number of such subforests for a tree T is bounded
by |T |min(D(T), L(T)). Thus, we have:

Theorem 2 Given trees S and T , the probabil-
ity Pr[µ(S) = T] can be computed in time
O(|S||T |min D(S), L(S)min(D(T), L(T)).

3.3. Parameter estimation

To estimate the parameter Θ of the transducer from
labeled data, we seek to maximize the log-likelihood
ℓ(Θ)

Θ∗ = arg max
Θ

∑

d

log Pr[π(Sd) = Td] (6)

where Sd and Td are a pair of past and present doc-
uments. We use simple gradient-based algorithms to
optimize the log-likelihood. The gradient with respect
to Θ can be computed also in dynamic programming.
The iterative update to Θ takes the form of

Θ← Θ + η
∂ℓ

∂Θ
(7)

where η is the learning step. Note that Θ is con-
strained in eq. (3). We can project the updated Θ
back to the constraints. The update still converges to
(local) stationary points.

Related Work There has been work on probabilistic
tree transducers (Graehl & Knight, 2004) for natural
language processing, but these models are not suit-
able for modelling changes in HTML webpages. More
recently, there have been efforts to define a stochas-
tic edit distance between trees (Boyer et al., 2007;
Bernard et al., 2006). However, these models fail to
define a valid probability distribution between trees as
they do not normlize correctly.

References

Anton, T. (2005). Xpath-wrapper induction by gener-
ating tree traversal patterns. LWA (pp. 126–133).

Baumgartner, R., Flesca, S., & Gottlob, G. (2001).
Visual web information extraction with lixto. VLDB
(pp. 119–128).

Probabilistic models for the dynamics of tree-structured data

Bernard, M., Habrard, A., & Sebban, M. (2006).
Learning stochastic tree edit distance. ECML (pp.
42–53).

Boyer, L., Habrard, A., & Sebban, M. (2007). Learning
metrics between tree structured data: Application
to image recognition. ECML (pp. 54–66).

Crescenzi, V., Mecca, G., & Merialdo, P. (2001). Road-
runner: Towards automatic data extraction from
large web sites. VLDB (pp. 109–118).

Graehl, J., & Knight, K. (2004). Training tree trans-
ducers. HLT-NAACL (pp. 105–112).

Han, W., Buttler, D., & Pu, C. (2001). Wrapping web
data into XML. SIGMOD Record, 30, 33–38.

Hsu, C.-N., & Dung, M.-T. (1998). Generating finite-
state transducers for semi-structured data extrac-
tion from the web. Information Systems, 23, 521–
538.

Kushmerick, N., Weld, D. S., & Doorenbos, R. B.
(1997). Wrapper induction for information extrac-
tion. IJCAI (pp. 729–737).

Muslea, I., Minton, S., & Knoblock, C. (1998). Stalker:
Learning extraction rules for semistructured.

Myllymaki, J., & Jackson, J. (2002). Robust web data
extraction with xml path expressions (Technical Re-
port). IBM Research Report RJ 10245.

Sahuguet, A., & Azavant, F. (1999). Building light-
weight wrappers for legacy web data-sources using
w4f. VLDB (pp. 738–741).

Zhang, K., & Shasha, D. (1989). Simple fast algo-
rithms for the editing distance between trees and
related problems. SIAM J. Comput., 18, 1245–1262.

