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Abstract

Can a multi-class classification model in some
situations be simplified to a ranking model
without sacrificing performance? We try to
answer that question from a theoretical point
of view for one-versus-one multi-class ensem-
bles. To this end, sufficient conditions are de-
rived for which a one-versus-one ensemble be-
comes ranking representable, i.e. conditions
for which the ensemble can be reduced to
a ranking or ordinal regression model such
that a similar performance on training data
is measured. As performance measure, we
use the area under the ROC curve (AUC)
and its reformulation in terms of graphs. By
means of a graph-theoretic analysis of the
problem, we are able to formulate necessary
and sufficient conditions for ranking repre-
sentability. For the three class case, this re-
sults in a new type of transitivity for pairwise
AUCs that can be verified by solving an in-
teger quadratic program.

1. Introduction

Many machine learning algorithms for multi-class clas-
sification aggregate several binary classifiers to com-
pose a decision rule (see e.g. (Allwein et al., 2000;
Fürnkranz, 2002; Rifkin & Klautau, 2004). In the pop-
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ular one-versus-one ensemble, a classifier is trained on
each pair of categories, but do we really need such
a complex model for every multi-class classification
task? For example, a one-versus-one ensemble is a very
flexible model, since it can represent the trends in the
data for each pair of categories separately, but, because
of that, it is also a complex model, being difficult to
fine tune with a limited amount of data. On the other
hand, a one-versus-all ensemble has substantially less
free parameters, decreasing the chance of overfitting,
but increasing the chance of underfitting the data.

One might agree that different multi-class classifica-
tion schemes have a different degree of complexity, but
no consensus has been reached on which one to pre-
fer. In this work we go one step further and inves-
tigate whether a one-versus-one multi-class model can
be simplified to a ranking model. We start from the as-
sumption that the optimal complexity of a multi-class
model is problem-specific. Reducing a one-versus-
one ensemble to a ranking model, can be seen as a
quite drastic application of the bias-variance trade-
off: a one-versus-one classification scheme is a complex
model, resulting in a low bias and a high variance of
the performance, while an ordinal regression model is
a much simpler model, manifesting a high bias but a
low variance. So, we do not claim that a one-versus-
one scheme can always be reduced to a ranking model.
We rather look for necessary and sufficient conditions
for such a reduction.
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2. Strict ranking representability

We start with introducing some notations in order to
state the problem setting a little bit more formally.
Let us assume that examples, training data as well as
test data, are identically and independently drawn ac-
cording to an unknown distribution over X × Y with
X the object space and Y an unordered set of r cat-
egories in an r-class classification task. We use the
notation Y = {y1, ..., yr} to denote the respective cat-
egories. Furthermore, we formally define a one-versus-
one model as a set F of r(r − 1)/2 ranking functions
fkl : X → R with 1 ≤ k < l ≤ r. Thus, we con-
sider one-versus-one schemes for which each binary
classifier produces a continuous output resulting in a
probability estimate or a ranking of the data for each
pair of categories. A dataset of size n will be denoted
D = {(x1, y1), ..., (xn, yn)}.

Given a one-versus-one classification model, repre-
sented by a set F of pairwise ranking functions, when
can we reduce this model to a single ranking f : X → R
that gives a better performance on unknown test data?
Or, equivalently, when can we simplify the one-versus-
one model to a ranking model without decreasing the
error on training data? Having in mind the bias-
variance trade-off, it would be appropriate to pre-
fer the single ranking model over the one-versus-one
scheme if the training error does not increase. In that
case, the former model is complex enough to fit the
data well in spite of having a lower variance over dif-
ferent training samples. In its most strict form, we
can define ranking representability of a one-versus-one
classification scheme as follows.

Definition 2.1. Let D ⊂ X × Y. We call a set
F of pairwise ranking functions strictly ranking rep-
resentable on D if there exists a ranking function
f : X → R such that for all yk, yl ∈ Y and any
(xi, yk), (xj , yl) ∈ D

fkl(xi) ≤ fkl(xj)⇔ f(xi) ≤ f(xj) . (1)

A graphical reformulation of strict ranking repre-
sentability is established as follows.

Definition 2.2. Let D ⊂ X × Y and let F be a set
of pairwise ranking functions. We define the graph
Gstrict(F , D) = (V,E) of F and D such that each node
vi in V is associated with one data object (xi, yi) in D
and

fkl(xi) ≤ fkl(xj)⇔ (vi, vj) ∈ E , (2)

with yi = yk, yj = yl, flk = −fkl for 1 ≤ k < l ≤ r.

Proposition 2.3. Let D ⊂ X × Y. A set F of pair-
wise ranking functions is strictly ranking representable

if and only if Gstrict(F , D) is a directed acyclic graph
(DAG).

Consequently, strict ranking representability of a set of
pairwise ranking functions can be easily checked with a
simple algorithm that verifies whether the correspond-
ing graph is a DAG.

3. AUC ranking representability

It goes without saying that strict ranking repre-
sentability has a very limited applicability to reduce
one-versus-one multi-class schemes, since the condi-
tion is too strong to be satisfied in practice. When
fitting r(r−1)/2 functions to the data in a multi-class
setting, it is unrealistic to think that all these func-
tions will impose a consistent ranking, i.e. a ranking
satisfying Eq. (1). Yet, is it really necessary to require
strict ranking representability in order to exchange a
one-versus-one model for a single ranking model? The
answer is no, since we are interested in a good perfor-
mance on independent test data. Therefore, demand-
ing that a single ranking gives exactly the same result
on training data as a one-versus-one scheme might be a
too strong condition. An obvious relaxation could ex-
ist in requiring that a single ranking model yields the
same performance on training data instead of requir-
ing the same results. This makes a subtle difference
since it is now allowed that both models make errors
on different data objects, as long as the total error of
both models is similar. As claimed above, the single
ranking model should attain better results on indepen-
dent test data when the bias-variance trade-off is taken
into consideration.

The performance measure that we will consider is the
pairwise AUC, which is defined as follows

Âkl(F , D) =
1

nknl

∑
yi=yk

∑
yj=yl

Ifkl(xi)<fkl(xj) . (3)

If we reduce the one-versus-one model F to a single
ranking model f : X → R, then we are able to compute
the pairwise AUC from this simplified model:

Âkl(f, D) =
1

nknl

∑
yi=yk

∑
yj=yl

If(xi)<f(xj) .

Given the definitions of Âkl(F , D) and Âkl(f, D), let
us first introduce a more formal definition of AUC
ranking representability.

Definition 3.1. Let D ⊂ X × Y. We call a set F of
pairwise ranking functions AUC ranking representable
on D if there exists a ranking function f : X → R such
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that

Âkl(F , D) = Âkl(f, D) ∀k, l : 1 ≤ k < l ≤ r . (4)

Under which conditions can we represent the set of
pairwise AUCs defined on r(r−1)/2 ranking functions
as a new set of pairwise AUCs but now defined on a sin-
gle ranking? In other words, when is a one-verus-one
model AUC ranking representable. Like strict ranking
representability, AUC ranking representability has a
graph-theoretic interpretation.
Definition 3.2. Let D ⊂ X ×Y and let F be a set of
pairwise ranking functions. We define GAUC(F , D) as
a set of complete directed graphs G = (V,E) for which
the following three properties hold:

1. Each node vi in V is associated with one data
object (xi, yi) in D.

2. No cycles occur in the subsets Vk = {vi ∈ V | yi =
yk}.

3. For 1 ≤ k < l ≤ r

Âkl(F , D) =
|{(vi, vj) ∈ E | yi = yk ∧ yj = yl}|

nknl
.

Remark that in a complete directed graph each pair of
nodes is connected by exactly one (directed) edge. So,
(v, v′) ∈ E implies (v′, v) /∈ E. Similar graph-theoretic
concepts have been introduced in (Waegeman et al.,
2008) to construct efficient algorithms for ROC mea-
sures in ordinal regression settings.

It follows directly from the definition that
GAUC(F , D) cannot be an empty set. Usually,
its cardinality will be greater than 1 since different
graphs satisfying the three conditions in Definition 3.2
will be found for a given F and D. In the following
lemma, AUC ranking representability is reformulated
in terms of the graph.
Proposition 3.3. Let D ⊂ X×Y. A set F of pairwise
ranking functions is AUC ranking representable if and
only if at least one of the graphs in GAUC(F , D) is a
directed acyclic graph.

4. Discussion

Unlike strict ranking representability, it is far form
trivial to verify whether a set of pairwise rankings F is
AUC ranking representable, since examining all graphs
in GAUC(F , D) will be computationally intractable for
large training samples. In the talk we will present a
way to tackle the problem by using the graph concepts
that we briefly introduced here. It turns out that AUC
ranking representability gives evidence of strong sim-
ilarities with the framework of cycle transitivity (De

Baets et al., 2006). Using this framework, we are able
to define necessary conditions for AUC ranking repre-
sentability, since the pairwise AUCs of an AUC rank-
ing representable one-versus-one scheme are reciprocal
relations coinciding with dice models (De Schuymer
et al., 2003; De Schuymer et al., 2005). These condi-
tions can be easily verified in practice by analyzing the
pairwise AUCs.

With the help of the graph formulations that we pre-
sented above, sufficient conditions for AUC ranking
representability can also be translated into the frame-
work of cycle transitivity. To this end, a new type of
cycle transitivity is introduced, leading to a verifiable
sufficient condition for the three class case. In this
way, AUC ranking representability can be checked by
solving an integer quadratic program.

Acknowledgment

Willem Waegeman is supported by a grant of the “In-
stitute for the Promotion of Innovation through Sci-
ence and Technology in Flanders (IWT-Vlaanderen)”.

References

Allwein, E., Schapire, R., & Singer, Y. (2000). Re-
ducing multi-class to binary: A unifying apprach
for margin classifiers. Journal of Machine Learning
Research, 1, 113–141.

De Baets, B., De Meyer, H., De Schuymer, B., & Jenei,
S. (2006). Cyclic evaluation of transitivity of recip-
rocal relations. Social Choice and Welfare, 26, 217–
238.

De Schuymer, B., De Meyer, H., & De Baets, B.
(2005). Cycle-transitive comparison of independent
random variables. Jounral of Multivariate Analysis,
96, 352–373.

De Schuymer, B., De Meyer, H., De Baets, B., &
Jenei, S. (2003). On the cycle-transitivity of the
dice model. Theory and Decision, 54, 164–185.

Fürnkranz, J. (2002). Round robin classification. Jour-
nal of Machine Learning Research, 2, 723–747.

Rifkin, R., & Klautau, A. (2004). In defense of one-
versus-all classification. Journal of Machine Learn-
ing Research, 5, 101–143.

Waegeman, W., De Baets, B., & Boullart, L. (2008).
On the scalability of ordered multi-class ROC anal-
ysis. Computational Statistics and Data Analysis,
52, 3371–3388.


