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Abstract
We apply the structured-output methodol-
ogy to the problem of predicting the molecu-
lar function of proteins. Our results demon-
strate that learning the structure of the out-
put space yields better performance when
compared to the traditional “transfer of an-
notation” method.

1. Introduction

We address the problem of automatic annotation of
protein function using structured output methods.
The function of a protein is defined by a set of key-
words that specify its molecular function, its role in
the biological process and its localization to a cellular
component. The Gene Ontology (GO) imposes a hier-
archy over the keywords and is considered the current
standard for annotating gene products and proteins
(Gene Ontology Consortium, 2000).

Computational methods for annotating protein func-
tion have been predominantly following the “trans-
fer of annotation” paradigm where GO keywords are
transferred from one protein to another based on the
sequence similarity between the two. This is generally
done by employing a sequence alignment tool such as
BLAST (Altschul et al., 1990) to find annotated pro-
teins that have a high level of sequence similarity to
the un-annotated query protein. Such variations on
the nearest-neighbor methodology suffer from serious
limitations in that they fail to exploit the inherent
structure of the annotation space. Furthermore, an-
notation transfer of multiple GO keywords between
proteins is not always appropriate, e.g. in the case of
multi-domain proteins (Galperin & Koonin, 1998).

Since proteins can have multiple functions, and those
functions are described by a hierarchy of keywords, we
formulate prediction of protein function as a hierarchi-
cal multi-label classification problem and apply struc-
tured output prediction methods to it. This work fo-
cuses on the structured-perceptron which we use as an
alternative to the BLAST nearest-neighbor methodol-
ogy. Empirical results demonstrate that learning the

structure of the output space yields improved perfor-
mance over transfer of annotation. In our experiments
we use BLAST to define the input space features as
well as to limit the output space during inference. We
demonstrate that failure to limit the output space can
be detrimental to the prediction accuracy. In future
work we will explore the use of more sophisticated
methods of structured output prediction, such as max-
imum margin classifiers (Tsochantaridis et al., 2005;
Rousu et al., 2006).

2. Methods

Prediction of protein function can be formulated as a
hierarchical multi-label classification problem as fol-
lows. Each protein is annotated with a macro-label
y = (y1, y2, ..., yk) ∈ {0, 1}k, where each micro-label yi

corresponds to one of the k nodes that belong to the
hierarchy defined by the Gene Ontology. The micro-
labels take on the value of 1 when the protein per-
forms the function defined by the corresponding node.
Whenever a protein is associated with a particular
micro-label, we also associate it with all its ancestors
in the hierarchy, i.e. given a specific term, we associate
with it all terms that generalize it. Note that the Gene
Ontology consists of three distinct hierarchies: molec-
ular function, biological process and cellular compo-
nent. In this work we focus on the molecular function
hierarchy.

We train a linear classifier to predict the molecular
function of proteins. Given a protein characterized by
x in the input feature space X , we make inference for
the most likely label according to:

ŷ = h(x) = arg max
y∈Y

f(x,y|w)

where Y is the set of possible macro-labels we are will-
ing to consider. The function f(x,y|w) : X × Y → R
can be thought of as a compatibility measure between
an input x and an output macro-label y. We assume
the function is linear in w, i.e. f(x,y|w) = wT φ(x,y)
in some space defined by the mapping φ.

We train the classifier using a variant of the perceptron
algorithm generalized for structured outputs (Collins,
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Algorithm 1 Perceptron for Structured Outputs
Input: training data {(xi,yi)}ni=1

Output: parameters αi,y for i = 1, ..., n and y ∈ Y.
Initialize: αi,y = 0 ∀i,y.
repeat

for i = 1 to n do
Compute the top two scoring labels:
ŷ← arg maxy∈Y f(xi,y|α)
ȳ← arg maxy∈Y\ŷ f(xi,y|α)
if ŷ 6= yi then

Handle misclassification:
αi,yi

← αi,yi
+ 1

αi,ŷ ← αi,ŷ − 1
else if f(xi,yi)− f(xi, ȳ) < γ then

Handle margin violation:
αi,yi

← αi,yi
+ 1

αi,ȳ ← αi,ȳ − 1
end if

end for
until a terminating criterion is met

2002). Given a set of n training examples {(xi,yi)}ni=1,
the algorithm attempts to find the vector w such that
the decision function values for the correct output and
the best runner-up are separated by the user-defined
margin γ:

wT φ(xi,yi)− max
y∈Y\yi

wT φ(xi,y) > γ ∀i.

To make use of kernels, we assume that the weight
vector w can be expressed as a linear combination of
the training examples:

w =
n∑

j=1

∑
y′∈Y

αj,y′φ(xj ,y′).

This leads to reparameterization of the decision func-
tion in terms of the α coefficients:

f(x,y|α) =
n∑

j=1

∑
y′∈Y

αj,y′K((xj ,y′), (x,y))

where K : (X × Y) × (X × Y) → R is the joint
kernel defined over the input-output space. In this
work, we take the joint kernel to be the product
of the input space and the output space kernels:
K((x,y), (x′,y′)) = KX (x,x′)KY(y,y′). For the
output-space kernel, KY , we use a linear kernel; the
input-space kernel is described below.

The general routine for learning the coefficients α is
presented in Algorithm 1. In our application, the ter-
minating criterion is taken to be a limit on the number
of iterations.

3. Experimental Results

We propose a loss function we call the kernel loss and
argue for its use in hierarchical classification problems
since it generalizes F -measure used in information re-
trieval (van Rijsbergen, 1979). Details will be provided
elsewhere.

∆(y, ŷ) = 1− KY(y, ŷ)√
KY(y,y)KY(ŷ, ŷ)

= 1− yT ŷ√
yT y · ŷT ŷ

We used the data from the following four species: C.
elegans, D. melanogaster, S. cerevisiae and S. pombe.
Our experiments followed the leave-one-species-out
paradigm, where we withheld one species for testing
and trained the perceptron on the remaining data,
rotating which species got withheld. This variant of
cross-validation simulates the situation of annotating
a newly-sequenced genome (Vinayagam et al., 2004).

Prior to making predictions, we ran the data through
several steps of preprocessing. First, we removed all
annotations that were discovered through computa-
tional means as these were generally inferred by se-
quence or structure similarity and would introduce
bias into any classifier that used sequence similarity
to make a prediction. Second, we expanded the set
of annotations associated with a protein to include all
ancestor nodes of the nodes it was annotated with; for
simplicity we considered a subset of the GO hierarchy
called GO-slims. We then ran BLAST for each of the
proteins in our dataset against all four species, remov-
ing the hits where the protein was aligned to itself.

We employed the nearest neighbor BLAST methodol-
ogy as our baseline. For every test protein, we trans-
ferred the annotations from the most significant hit
against a protein from another species. Proteins with
e-values above 10−6 were not considered in our exper-
iments.

The structured-output perceptron is provided exactly
the same data as the BLAST method. The input-
space kernel is an empirical kernel map that uses the
negative-log of the BLAST e-values that are below 50,
where the features were normalized to have values less
than 1.0 and the input vectors are normalized to be
unit vectors.

The inference during training was limited to only those
macro-labels that appear in the training dataset. We
call this space Y1. For inference of test sample labels
we considered three different output spaces, Y1,Y2,Y3,
in order to examine the effect of the size of the search
space on prediction accuracy. We define Y3(x) to be
the set of macro-labels that appear in the significant
BLAST hits of protein x (e-values below 10−6). Ad-
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Test on C. elegans D. melanogaster S. cerevisiae S. pombe Output
Fold size 844 1804 1853 898 Space
BLAST NN 0.390(0.258) 0.278(0.264) 0.221(0.252) 0.223(0.240) -
Perceptron 0.403(0.254) 0.280(0.262) 0.221(0.242) 0.255(0.243) Y1

Perceptron 0.404(0.260) 0.265(0.271) 0.204(0.244) 0.221(0.243) Y2

Perceptron 0.398(0.264) 0.263(0.271) 0.199(0.242) 0.222(0.243) Y3

Random 0.507(0.217) 0.527(0.208) 0.529(0.200) 0.490(0.217) -

Table 1. Empirical results comparing the performance of the traditional transfer-of-annotation method to the structured
outputs approach. Presented are mean kernel loss per protein with the standard deviation values in parentheses. For
comparison, we also include the performance of a random classifier that transfers annotation from a training example
chosen uniformly at random.

ditionally, we define Y2(x) to be the set of all subsets
of macro-labels that can be obtained from the micro-
labels in Y3(x), with the constraint that each macro-
label represents three leaf nodes of the hierarchy at the
most. These label spaces satisfy: Y3(x) ⊆ Y2(x) ⊆ Y1.

The results are presented in Table 1. When the out-
put label space is limited to Y2 or Y3 during testing,
the structured perceptron algorithm outperforms the
BLAST nearest-neighbor classifier. The larger label-
space Y1, results in the inference procedure considering
annotations that are irrelevant to the actual function
of the test protein, which reduces the prediction ac-
curacy. However, even in this case, the perceptron
maintains competitive performance compared to the
BLAST nearest-neighbor method. The results sup-
port our hypothesis that learning the structure of the
output space is superior to simple transfer of annota-
tions.

Note that the classifiers performed poorly when testing
proteins from C. elegans. This is due to the fact that a
vast majority of proteins in this species are annotated
as protein binders (GOID:0005515). Such annotations
contain little information from a biological standpoint
and result in a skewed set of output labels. However,
removing the species or the micro-label from the anal-
ysis lowers prediction accuracy suggesting that there
is relevant information in the input space features cap-
tured by the dataset.

We have shown here that a structured output method
performs better than a nearest neighbor method when
provided with the same information. Our structured
output method can be enhanced in several ways to
further boost its performance: Additional information
can easily be provided in the form of additional kernels
on the input space that use other forms of genomic
information (e.g. protein-protein interactions); the
structured-perceptron can be replaced with maximum
margin classifiers; and furthermore, semi-supervised
learning can be used to leverage the abundance of

available sequence information. In future work we will
also consider larger datasets that include a larger num-
ber of species.
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