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Abstract

Agents that learn and act in real-world environ-
ments have to cope with both complex state de-
scriptions and non-deterministic transition be-
havior of the world. Standard statistical rela-
tional learning techniques can capture this com-
plexity, but are often inefficient. We present
a simple probabilistic model for such environ-
ments based on CP-Logic. Efficiency is main-
tained by restriction to a fully observable set-
ting and the use of efficient inference algorithms
based on binary decision diagrams.

1. Introduction

Artificial intelligence aims at developing agents that learn
and act in complex environments. Realistic environments
typically feature a variable number of objects, relations
amongst them, and non-deterministic transition behavior.
Examples for such environments are massively multiplayer
online role-playing games, where an agent or user has to
make decisions based on his role in a social network and
current relationships with other users. Standard probabilis-
tic sequence models provide efficient inference and learn-
ing techniques, but typically cannot fully capture the re-
lational complexity. On the other hand, statistical rela-
tional learning techniques are often too inefficient. In this
paper, we present a simple model that occupies an inter-
mediate position in this expressiveness/efficiency trade-off.
More specifically, we contribute a novel representation,
called CPT-L (for CPTime-Logic), that essentially defines
a probability distribution over sequences of interpretations.
Interpretations are relational state descriptions that are typ-
ically used in planning and many other applications of ar-
tificial intelligence. CPT-L can be considered a variation
of CP-logic (Vennekens et al., 2006), a recent expressive
logic for modeling causality. By focusing on the sequen-
tial aspect and deliberately avoiding the complications that
arise when dealing with hidden variables, CPT-L is more
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restricted, but also more efficient to use than its predecessor
and alternative formalisms within the artificial intelligence
and statistical relational learning literature.

This is clear when positioning CPT-L w.r.t. the few
existing approaches that can probabilistically model se-
quences of relational state descriptions. First, standard
SRL-approaches (Getoor & Taskar, 2007) can be used in
this setting by explicitly modeling time. However, such
models are often intractable for complex sequential real-
world domains. Second, relational STRIPS-based tech-
niques (Zettlemoyer et al., 2005) are able to probabilisti-
cally model relational sequences. However, they are re-
stricted by the fact that only one rule can “fire” at a partic-
ular point in time and thus only one aspect of the world can
be changed. Finally, a third class of approaches (e.g. rela-
tional simple-transition models (Fern, 2005)) is concerned
with modeling domains where the process generating the
data is hidden. This is a significantly harder setting than
the one discussed in this paper. The key contributions of
our work are the introduction of 1) the CPT-L model for
representing probability distributions over sequences of in-
terpretations, 2) efficient algorithms for inference in CPT-L
and 3) a simple but efficient Expectation-Maximization al-
gorithm (EM) algorithms for parameter learning from fully
observable example sequences.

2. CPT-L

A relational interpretation I is a set of ground facts
ai,...,an representing the objects and relations between
them in the current state. A relational stochastic process
defines a distribution P(Iy, ..., IT) over sequences of inter-
pretations of length 7', and thereby completely character-
izes the transition behavior of the world.

The semantics of CPT-L is based on CP-logic, a probabilis-
tic first-order logic that defines probability distributions
over interpretations (Vennekens et al., 2006). CP-logic has
a strong focus on causality and constructive processes: an
(logical) interpretation is incrementally constructed by a
process that adds facts which are probabilistic outcomes
of other already given facts (the causes). CPT-L com-
bines the semantics of CP-logic with that of (first-order)
Markov processes. Causal influences only stretch from
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I; to I;+1 (Markov assumption), are identical for all time
steps (stationarity), and all causes and outcomes are ob-
servable. Models in CPT-L are also called CP-theories, and
are defined as follows:

Definition 1. A CPT-theory is a set of rules of the form

r=(h1:p1)V...V(hy:pp) < b1,...,bm
head(r) body(r)

where the h; are logical atoms, the b; literals (atoms or
their negation) and p; € [0, 1] probabilities s.t. y .., p; =
1.

We shall also assume all variables appearing in the head
of the rule also appear in its body. The intuition behind a
rule is that whenever the (grounded) body of the rule holds
in the current state I;, one of the (grounded) heads will
hold in the next state [;y;. In this way, the rule models
a (probabilistic) causal process as the condition specified
in the body causes one (probabilistically chosen) atoms in
the head to become true in the next time step. One of the
main features of CPT-theories is that they are easily ex-
tended to include background knowledge, which can be any
logic program (cf. (Bratko, 1990)). In the presence of back-
ground knowledge, we say that a ground rule is applicable
in an interpretation I, if its body 016, .. ., b,,0 can be logi-
cally derived from I; and the logic program B.

A CPT-theory defines a distribution over possible succes-
sor states, P(Izy1 | It), in the following way. Let R; =
{r1,...,7} denote the set of all ground rules applicable
in the current state I;. Each ground rule applicable in I;
will cause one of its head elements to become true in I; 1.
More formally, a selection o is a mapping from rules r; to
indices j; denoting that head element h;;, € head(r;) is
selected. In the stochastic process to be defined, I;y; is a
possible successor for the state I; if and only if there is a
selection o such that I; 1 = {h1,(1), -, hio(k) }- We say

that o yields I, 1 from I;, denoted I; Z Ii41, and define

Pl = > Pe)= > ( II ») O

oI, 5T oI STy, (Tidi)€o
where p;, is the probability associated with head element
hij, in ;. As for propositional Markov processes, the prob-

ability of a sequence Iy, ..., I7 given an initial state I is
T

defined by
P(I,. Ir) = P [[ PUira | ). )
t=0
Intuitively, it is clear that this defines a distribution over
all sequences of interpretations of length 7" much as in the
propositional case. More formally, the Kolmogorov exten-
sion theorem can be used to prove the following theorem:

Theorem 1 (Semantics of a CPT theory). Given an ini-
tial state Iy, a CPT-theory defines a discrete-time stochas-
tic process, and therefore for T € N a distribution
P(I4, ..., IT) over sequences of interpretations of length T

1. Initialize f := true
2. Compute applicable ground rules
R: = {r0|body(r0) is true in I, }
3. Vr(r = (p1: Ry oo Pt Bpy) < b1,y b)) in Ry do:
@ f:=fA(rhV..Vrh,),
(b) f:= fA(-r.h;V-rh;)foralli#j
4. For all facts | € I;41
(a) Initialize g := false
(b) forallr € Ry withp: [ € head(r)do g :=gVrl
(© f:==fNg

Figure 1. Algorithm to convert the inference problem into a for-
mula f. Concatenations .h of a rule r and head element h denote
a propositional variable indicating that k was selected in 7.2

3. Inference and Parameter Estimation

As for other probabilistic models, we can now ask several
questions about the introduced CPT-L model:

e Sampling: how to sample sequences of interpretations
I, ..., I from a given CPT-theory 7 and initial inter-
pretation I?

o Inference: given a CPT-theory 7 and a sequence of in-
terpretations I, ..., I, whatis P(I1,...,Ip | 7)?

e Parameter Estimation: given the structure of a CPT-
theory 7 and a set of sequences of interpretations, what
are the maximum-likelihood parameters of 7°?

e Prediction: Let 7 be a CPT-theory, I,...,I; a se-
quence of interpretations, and F' a first-order for-
mula that constitutes a certain property of interest.
What is the probability that F' holds at time ¢ + d,
P(lira Fp F | T, 11, ... I)?

Sampling from a CPT-theory 7 given an initial interpreta-
tion I is straightforward due to the causal semantics em-
ployed in CP-logic. For ¢ > 0, I;4; can be constructed
from I; by finding all groundings 6 of rules r € 7, and
sampling for each r6 a head element to be added to I;1.

Inference: Because of the Markov assumption (Equa-
tion 2), the crucial task for solving the inference problem
is to compute P(I;41 | It) for given I;1 1 and I;. Accord-
ing to Equation 1, this involves summing the probabilities
of all selections yielding [;4; from ;. However, the num-
ber of possible selections ¢ is exponential in the number
of ground rules |R;| applicable in I;, so a naive generate-
and-test approach is infeasible. Instead, we present an ef-
ficient approach for computing P(Iz41 | I;) without ex-
plicitly enumerating all selections yielding ;4 ;, which is
strongly related to the inference technique discussed in (De
Raedt et al., 2007) and also somewhat related to techniques
discussed in (Chavira et al., 2006). The problem is first
converted to a DNF formula over boolean variables such
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Figure 2. Large graph: per-sequence log-likelihood on training
data as a function of the EM iteration together with the log-
likelihood for the gold standard model. Small graph: Running
time of EM as a function of the number of blocks in the world
model.

that assignments to variables correspond to selections, and
satisfying assignments to selections yielding ;. The for-
mula is then compactly represented as a binary decision di-
agram (BDD), and P(I;41 | I;) efficiently computed from
the BDD using dynamic programming. Although finding
satisfying assignments for DNF formulae is a hard prob-
lem in general, the key advantage of this approach is that
existing, highly optimized BDD software packages can be
used. The conversion of a given inference problem to a
DNF formula f is briefly sketched by the pseudocode given
in Figure 1.

Learning can be realized by an expectation-maximization
approach, where the hidden information is the head ele-
ment used in the application of a grounded rule. Sufficient
statistics for the maximization step are the expected num-
ber of times a head element h has been selected in rule 7,
and the key algorithmic challenge is to compute these ex-
pectations efficiently. This can be realized using the same
BDD structure as for inference, with a dynamic program-
ming algorithm related to the forward-backward procedure
used in hidden Markov models.

4. Experimental Evaluation

The proposed CPT-L model has been evaluated in a
stochastic version of the well-known blocks world do-
main. The domain was chosen because it is truly rela-
tional and also serves as a popular artificial world model
in agent-based approaches such as planning and reinforce-
ment learning. Furthermore, it is an example for a domain
in which multiple aspects of the world can change concur-
rently — for instance, a block can be moved from A to
B while at the same time a stack collapses, spilling all of
its blocks on the floor. In an experiment, we explore the
convergence behavior of the EM algorithm for CPT-L. The

world model together is implemented by a (gold-standard)
CPT-theory 7, and a training set of 20 sequences of length
50 each is sampled from 7. From this data, the parameters
are re-learned using EM. Figure 2, large graph, shows the
convergence behavior of the algorithm on the training data
for different numbers of blocks in domain, averaged over
15 runs. It shows rapid and reliable convergence. Figure 2,
small graph, shows the running time of EM as a function
of the number of blocks. The scaling behavior is roughly
linear, indicating that the model scales well to reasonably
large domains. Absolute running times are also low, with
about 1 minute for an EM iteration in a world with 50
blocks.This is in contrast to other, more expressive model-
ing techniques which typically scale badly to domains with
many objects. The difference between the log likelihood on
an independent test set of the gold-standard model and the
learned model, were by four orders of magnitudes smaller
than the difference to a random model. Manual inspection
of the learned model also shows that parameter values are
on average very close to those in the gold-standard model.

5. Conclusions and Future Work

We have introduced CPT-L, a probabilistic model for se-
quences of relational state descriptions. In contrast to other
approaches that address this setting, the focus in CPT-L is
on computational efficiency rather than maximal expres-
sivity. The main interesting directions for future work is to
further evaluate representation power and scaling behavior
of the model in challenging real-world domains.
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