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Milano (Italy)

Keywords: music graphs mining, second immanantal polynomial, independent component analysis, graph
metric, structural similarity

Abstract

Graphs represent an effective tool for model-
ing structural features of music in symbolic
format. Here we show how it is possible to
characterize a music graph by means of the
second immanantal polynomial and how to
embed the polynomial coefficients into a low
dimensional vector space, biased on specific
music collections, by means of Independent
Component Analysis, thus allowing for music
mining through the standard inner product.

1. Introduction

A new model oriented to mining of similarly struc-
tured musical themes has been proposed in (Pinto &
Haus, 2007) relying on graph theory. The underlying
idea is that melodic sequences can be clustered by par-
titioning them into equivalence classes characterized
by having isomorphic representative graphs. The next
step is mining similar graphs by means of a similarity
function which makes use of graph powers. Graphs are
labeled and the similarity function involves all possible
isometries and graph powers up to a fixed degree. This
makes the model not very suitable for online applica-
tions. In this paper our approach is different and relies
basically on a characterization of graphs with less than
12 nodes by their second immanantal polynomial.

The rest of the paper is organized as follows. First we
introduce the graph model and present the main re-
sults about algebraic graph theory for the characteri-
zation of melodies in section 2. In section 3 we present
a clustering method based on the embedding of in-
variant vectors in a three dimensional space through
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independent component analysis (ICA) and finally in
section 4 we provide an evaluation of this technique
against the Themefinder database of classical themes.

2. Graph model

Let M be a theme of length m = |M | and consider the
sequence of pitches {hs}s∈I, {I = 1, ...,m}. Let V =
Z12 be the metric space of pitches, or pitch classes, in
the 12-tone system and consider the linear graph Gl

obtained by associating a vertex labelled by hs to every
element hs ∈ V and an edge as : hs → hs+1 to every
couple (hs, hs+1), so that ∂0as = hs and ∂1as = hs+1

(Bollobás, 1998). The music graph which represents
the melodic sequence is obtained by quotienting the
vertex set by identifying the vertex with the same label
(Haus & Pinto, 2005).

In order to endow the set of representative graphs (one
for each melody) with a suitable concept of distance a
spectral approach has been proposed in (Pinto et al.,
2007). One way to characterize a graph is in fact to use
the spectral properties of some matrixes related to it.
The concept of music similarity is independent from
node permutation, so the graph distance measure has
to be invariant under permutations of vertexes and this
is the main reason to deal with spectra of those ma-
trices (Cvetkovi et al., 1995), (Sarkar & Boyer, 1996)
and (Umeyama, 1988).

The problem with graph spectra is that they do not re-
ally characterize a graph as two non isomorphic graph
can share the same spectrum. (Zhu & Wilson, 2005)
provides an estimation of the percentage of cospectral
graphs with 11 vertices both for the adjacency matrix
(∼21%) and for the laplacian matrix (∼9%). In other
words, we are looking for a polynomial p(G) associated
with a graph G such that
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{
if G1 6= G2 then p(G1) 6= p(G2)
if p(G1) 6= p(G2) then G1 6= G2

(1)

As for the equals in equations 1, we remind that for
graphs equal means isomorphic and for polynomials it
means to have the same degree and coefficients. As
graph isomorphism is known as an NP-complete prob-
lem, in general it is not easy to establish without doubt
if two graphs are isomorphic or not. There are many
invariants and necessary conditions one can exploit but
by no means they can provide criteria for graph iso-
morphism.

Nevertheless, for graphs whose order is less than twelve
it is known that the second immanantal polynomial
d2(xI − L(G)) of the laplacian matrix has the prop-
erty 1 and its coefficients are computable in polynomial
time (n4) (Cvetkovi et al., 1995) (Sossa et al., 1992).

Such a property does not hold for graphs whose size
is greater than 12 but for music this is not (and for
the standard western notation not at all) a strong lim-
itation, as music graphs relative to standard western
music notation have at most 12 nodes. The d2 poly-
nomial associated with the laplacian matrix L(G) is:

d2(xI − L(G)) = c0(G)xn − c1(G)xn−1 + . . .

+(−1)ncn(G) (2)

The coefficients c0, . . . , cn can be computed as follows:

c0(G) = n− 1
c1(G) = 2m(n− 1)

ck(G) =
∑

X∈Qk,n

( n∑
i=1

li,i det
(
L(G){X}(i)

)
−det

(
L(G){X}

))
(3)

Qk,n denotes the collection of Ck
n k-element subsets of

the set {1, 2, . . . n}. If we denote with L[X] the k × k
principal submatrix of M corresponding to X, where
X ∈ Qk,n, we can define the m×m matrix

L{X} =
(

L[X] 0k

0k In−k

)
(4)

where In−k is the identity matrix of size n − k, 0k is
the null matrix of size k and L{X}(i) is the matrix
obtained from L{X} by removing the n-th row and
the n-th column.

3. Graph embedding

At this point we are able to partition the set of rep-
resentative graphs into equivalence classes with the
equivalence relation provided by sharing the same sec-
ond immanantal polynomial, that is to say the same
characteristic vector c = (c0, c1, . . . , cn).

In this section we are going to introduce a technique to
get a better clustering of the characteristic set in order
to provide a more reliable metric for the representative
graphs, specifically designed for the graphs actually
present in the database. In fact, our objective is to
provide a metric that allows to make queries on a large
collection of representative graphs, or better of their
characteristic vectors c. As they come from a music
database, they are supposed not to be an arbitrary
distribution of twelve-dimensional vectors, thus it is
a good rule to find out the main characteristics, or
components, of the specific collection.

Here this task is worked out by an Independent Com-
ponent Analysis (ICA) algorithm which has been
shown to perform best in image classification tasks
(Luo et al., 2003). The idea is to find the most in-
dependent components, in the interval (0, 12), of all
the characteristic set and then to project each vector
on these independent components (Hyvarinen & Oja,
2000).

We used the first three most significant independent
components e1, e2, e3 to represent the characteristic
vectors extracted from the themes. The coordinate
system is spanned by the the three independent com-
ponents e1, e2, e3 and the characteristic vectors cj can
be projected onto this pattern space by xj

i = ei · cj,
where i = 1, 2, 3, j = 1, 2, . . . , N and N is the dimen-
sion of the database. It follows immediately that the
metric will be the standard one between vectors in this
linear space.

4. Experimentation

The experiments have been carried out on musical in-
cipits taken from the Themefinder database developed
at the Center for Computer Assisted Research in the
Humanities of Stanford University. First of all the
Themefinder format (differential) is converted into a
note sequence. Then adjacency and laplacian matrixes
are computed for each graph, together with the d2-
coefficients. Afterwards an independent component
analysis algorithm is applied to the set of coefficients
in order to extract the main three independent com-
ponents.

In Figure 1 three themes of the database randomly
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chosen have been windowed and embedded in the clus-
tering space all windowed themes in order to investi-
gate how different “views” of the same object can be
embedded. The third picture in Figure 1 represents
the embedding of windowing of the third randomly
chosen theme; in the second picture we added also the
cluster of the windowing process applied to the second
randomly chosen theme. The first picture includes all
three clusters. From these plots is it possible to draw
some conclusions. Clusters are evident in Figure 1
and so it is possible to partition the scattered plot
into equivalence classes corresponding to the different
orbits. We can also remark that it is possible that
there are intersections between different orbits, as in
the first picture of Figure 1 where there is an element
of the first orbit which is quite close to the orbit of the
second theme. This is because the original themes may
share a similar structure but only in some windows.

5. Conclusions

We presented a music graph characterization through
the second immanantal polynomial, which provides an
invariant set of coefficients which completely charac-
terizes a music graph. This allows for music graph
partitioning in polynomial time. Then it is possible
to embed the set of polynomial coefficients into a low
dimensional space (a three dimensional space) where
it is possible to give a graph metric tuned on the spe-
cific collection by means of the standard product. This
space is spanned by the independent vectors provided
by the Independent Component Analysis performed on
all vectors belonging to the database.
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Figure 1. Orbit clusters for variations of 3 themes. The
third plot represents only the third set of variations, the
second plot the second and the third sets and in the first
plot all variations are present.
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