
Adaptation for Changing Stochastic Environments
through Online POMDP Policy Learning

Guy Shani, Ronen I. Brafman, and Solomon E. Shimony

Ben-Gurion University, Beer-Sheva, Israel
{shanigu,brafman,shimony }@cs.bgu.ac.il

Abstract. Computing optimal or approximate policies for partially observable
Markov decision processes (POMDPs) is a difficult task. When in addition the
characteristics of the environment change over time, the problem is further com-
pounded. A policy that was computed offline may stop being useful after suffi-
cient changes to the environment have occurred. We present an online algorithm
for incrementally improving POMDP policies, that is highly motivated by the
Heuristic Search Value Iteration (HSVI) approach — locally improving the cur-
rent value function after every action execution. Our algorithm adapts naturally
to slow changes in the environment, without the need to explicitly model the
changes. In initial empirical evaluation our algorithm shows a marked improve-
ment over other online POMDP algorithms.

1 Introduction

Consider an agent situated in a partially observable domain: It executes an action that
may change the state of the world; this change is reflected, in turn, by the agent’s sen-
sors; the action may have some associated cost, and the new state may have some asso-
ciated reward or penalty. Thus, the agent’s interaction with this environment is charac-
terized by a sequence of action-observation-reward steps. Our goal is to have the agent
act optimally (in the sense of expected reward) given what it knows about the world.
Our focus is thus on agents with imperfect and noisy sensors, in the well-known frame-
work of partially observable Markov decision processes (see section 2 for an overview
of POMDPs).

Finding the optimal policy for a POMDP is known to be computationally intractable
in the worst case, proved to be PSPACE-hard. While there are numerous algorithms
for solving POMDPs with various restrictions, the difficulty of the general problem has
prompted the developement of numerous approximation algorithms. When the (stochas-
tic) behavior of the environment does not vary over time, we may apply one of these
approximate schemes. These techniques may take a long time to produce a policy that
is good enough, but as this effort is executed offline, it does not effect the online policy
execution.

However, when the above assumption of a static environment does not hold, a pol-
icy that was optimal may become very far from optimal, as changes in the environment
parameters (changes in the reward function, the transition probabilities, or sensor ac-
curacy) accumulate. The naive solution is a costly re-computation of the policy. There
are two problems in the naive approach: a) Until the decision to re-compute is made,
the agent is acting according to a sub-optimal policy, and b) complete re-computation

2

of a policy may have such great resource (time and memory) consumption that it can in
practice interfere with agent actions. While presumably the first problem can be solved
by re-computation every time the environment parameters change, the complexity of
POMDP solution rule out such a scheme in practice.

Point-based algorithms [8, 10, 9] are among the new, emerging techniques for scal-
ing up to larger environments. This family of algorithms computes a partial policy for a
part of the belief space, in the hope that the computed policy will hold for other belief
states as well.

Our method is to leverage the flexible nature of point-based approximation algo-
rithms to adapt to changes in the environment parameters, as long as these changes are
relatively slow. While over a significant period of time a policy may need to change
drastically, over short intervals minor adjustments to the policy suffice in order to act
nearly optimally. An online algorithm we present requires only a little computational
effort after each action/observation, and generates an approximate policy that can track
the changes in the parameters.

The underlying assumption, that the parameters change slowly, is reasonable in var-
ious applications. For example, in a sensor model changes occur due to sensor aging,
which is a long-term process. Likewise, transition probabilities in many cases are due
to mechanical wear in parts, also a long term process. In user models for recommender
systems, transition probabilities measure trends in a population, and thus are also liable
to change slowly. While admittedly environments may also exhibit drastic changes in
parameters, such as paths becoming completely blocked in a robot navigation prob-
lem, we argue that such changes typically occur less frequently. Between such drastic
changes requiring complete policy recomputation, the agent should still benefit from
incremental policy updates.

Our algorithm, Simple Online Value Iteration (SOVI), hence updates the POMDP
parameters and continuously computes an approximate policy, using an online algo-
rithm heavily motivated by the Heuristic Search Value Iteration (HSVI) algorithm [9].
SOVI maintains both an upper bound and a lower bound on the learned policy, where
the upper bound is used for directing exploration in the environment, while the lower
bound maintains the learned policy.

This paper is structured as follows: Section 2 begins with an overview of MDPs,
POMDPs and their respective policy optimization algorithms. We explain the point-
based approach for solving POMDPs and present a number of previous online ap-
proaches. Our online learning algorithm is presented in Section 3, followed by an ex-
perimental evaluation of our work in Section 4.

2 Background and Related Work

2.1 MDPs and POMDPs

A Markov Decision Process (MDP) [4] is a model for sequential stochastic decision
problems. An MDP is a four-tuple:〈S, A,R, tr〉, whereS is the set of the states of
the world,A is a set of actions an agent can use,R is a reward function, andtr is the
stochastic state-transition function. A solution to an MDP is a policyπ : S → A that
defines which action should be executed in each state.

Various exact and approximate algorithms exist for computing an optimal policy,
and the best known are policy-iteration [4] and value-iteration [1]. Solving MDPs is

3

known to be a polynomial problem in the number of states, and therefore exponential
in the number of state variables. A value function assigns for each state a valueV (s)
— the expected utility from acting optimally begining ins and on to infinity. Value
iteration computes an optimal value function by iteratively solving the equation:

Vn+1(s) = max
a

∑
s′

tr(s, a, s′)Vn(s′) (1)

A well known extension to the MDP model is the Partially Observable Markov
Decision Process (POMDP) model [3]. A POMDP is a tuple〈S, A,R, tr,Ω,O〉, where
S, A,R, tr define an MDP,Ω is a set of possible observations andO(a, s, o) is the
probability of executing actiona, reaching states and observingo. The agent is unable
to identify the current state and is therefore forced to estimate the current state given
the current observations (e.g. output of the robot sensors) and the agents’ history. In
many application domains POMDPs are a more precise and natural formalization than
an MDP, but using POMDPs increases the difficulty of computing an optimal solution.

A compact approach to the representation of the history is in maintaining a belief
stateb(s) = p(s|h) — the probability of being in states after executing and observing
historyh. The next belief statebo

a,b resulting from executing actiona and observingo
in belief statea can be computed using:

bo
a,b(s) =

O(a, s, o)
∑

s′′ b(s′′)tr(s′′, a, s)
pr(o|b, a)

(2)

2.2 Approximate Solutions to POMDPs

Solving a POMDP is an extremely difficult computational problem, and various at-
tempts have been made to compute approximate solutions that work reasonably well in
practice.

An exact solution to a POMDP can be computed using the belief state MDP —
an MDP over the belief space of the POMDP. A value function for a POMDP can be
described using a set of|S| dimensional vectors defining the expected utility, where
each vectorαa ∈ V corresponds to an actiona, that is, the value of executing the action
a in every belief stateb given a vectorα that corresponds to actiona, can be computed
by α · b =

∑
s α(s)b(s). Using such a value functionV = {αi} we can define a policy

πV over the belief state:
πV (b) = argmaxa:αi

a∈V αa · b (3)

We can compute the value function over the belief state MDP iteratively:

Vn+1(b) = max
a

b · ra + γ
∑

o

pr(o|a, b)Vn(bo
a,b) (4)

wherera(s) = R(s, a). The computation of the next value functionVn+1(b) out of
the current oneVn (Equation 4) is known as abackupstep. The backup step can be
implemented more efficiently by splitting the backup step into:

backup(b) = argmax{gb
a}a∈A b · gb

a (5)

gb
a = ra + γ

∑
o

argmax{gi
a,o}i b · gi

a,o (6)

gi
a,o(s) =

∑
s′

O(a, s′, o)tr(s, a, s′)αi(s′) (7)

4

Note thatgi
a,o is independent of the belief stateb and can therefore be cached.

A point-based algorithm [8] is an algorithm that computes a value function over a
finite set of belief points (belief states). Point based algorithms compute an approximate
solution as they do not iterate over the entire (infinite) belief space.

Spaanet al.explore the world randomly to gather a setB of belief points and then
execute the Perseus algorithm (Algorithm 1)[10]. Spaanet al.also explain how backups
can be computed efficiently. Perseus appears to provide good approximations with small
sized value functions rapidly.

Algorithm 1 Perseus
Input: B — a set of belief points
1: repeat
2: B̃ ← B
3: V ′ ← φ
4: while B̃ not emptydo
5: Sampleb ∈ B̃
6: α← backup(b)
7: if α · b > V (b) then
8: V ′ ← V ′ ∪ {α}
9: else

10: V ′ ← V ′ ∪ {argmaxβ∈V β · b}
11: B̃ ← {b ∈ B̃ : V ′(b) < V (b)}
12: V ← V ′

13: until V has converged

2.3 Online POMDP Algorithms

Agents that apply online (or real-time) algorithms roam the environment, learning a
policy while acting. Such algorithms can be useful when the environment is too large
to learn prior to acting, or as in our case, when the environment is slowly changing.
There are many online algorithms for MDPs, the most famous of which isQ-learning,
yet only a few attempts have been made at online learning for POMDPs.

Perhaps the earliest attempt at online approaches for POMDPs is the BEL-RTDP
algorithm of Bonet and Geffner [2]. If we choose to represent the policy not as a set of
vectors but directly in belief spaceQ values, we can define theH operator that updates
a value functionV :

HV (b) = max
a

∑
s

b(s)R(s, a) + γ
∑

o

pr(o|a, b)V (bo
a,b) (8)

Bonet and Geffner use theH operator for updating their value function at every ob-
served belief state. They propose to discretize the belief space such that every belief
state is mapped to the closest (discrete) belief state such that each entry in the dis-
crete belief state has to bei/k, wherek is a predefined constant (Bonet et al. use
k ∈ [10, 100]). Thus, updating the value function for a belief state occurs also when
similar belief states are updated. A limitation of this approach is that it attempts to

5

group together belief states in a crude manner, as the assumption that belief states with
close values require the same action is often wrong.

Paquet et al. take this idea a step forward in their Real Time Belief State Search
(RTBSS) algorithm [7]. They suggest to expand theH operator so that it will not look
only into the next belief statebo

a,b, but will expand the search farther into the future,
tracking all possible trajectories until a predefined maximal depthk has been reached.
Thus, an AND OR search tree is produced with depthk. Paquet et al. use a predefined
optimistic heuristic function to prune the search tree, and to provide estimates to the
value function at the leaves. They choose not to maintain the value function but rather
to apply the search at every step. Their value function is therefore non-improving, and
heavily depends on the heuristic function andk – the maximal search depth. While this
approach provides total flexibility in the face of non-stationary environments, it is dif-
ficult in general to pre-compute a good value fork, and when the environment changes
only slowly, much computational power is wasted when the search is restarted from
scratch. RTBSS also searches a large number of unneeded belief states, and indeed, in
our experiments explored a much larger portion of the belief space, without obtaining
superior policies.

Smith and Simmons suggest a different approach. They propose the Heuristic Search
Value Iteration algorithm, that was initially proposed as an offline algorithm, but can be
easily expanded to an online version. They maintain both a lower bound and an up-
per bound on the value function. The lower bound is maintained as a set of vectors
V
¯

= {αi} and the upper bound is maintained as a set of belief pointsV̄ = {bi}. The
upper bound is initialized using an optimistic heuristic function, such as theQMDP

value function. Updating the lower bound is done using the backup operator, while up-
dating the upper bound is done using theH operator. When a value for a belief point
that is not inV̄ during theH computation is needed, they suggest to use a linear pro-
gram to find its value given the other points currently inV̄ . To optimize exploration,
they choose to execute at each step the action with maximalH value, thus possibly
lowering the upper bound. While their approach is highly attractive, we shall present a
few improvements in the next section.

3 Simple Online Value Iteration

The HSVI algorithm above can be easily improved to produce faster convergence with
lower computational overhead. In this section we present the Simple Online Value Iter-
ation algorithm (SOVI) that improves upon the performance of HSVI.

First, the highest computational cost comes from the computation of linear pro-
grams with many parameters (|V̄ |). In our experiments, even on the smallest problems,
HSVI failed to execute in reasonable time due to this computational cost.1 We suggest a
simpler approach — instead of computing values for new points using linear program-
ming, we suggest using the heuristic value for these points.

Another possible improvement can be made to the lower bound updates using the
backup operator. We use an approach motivated by the Prioritized Sweeping algo-
rithm [6] for MDPs. Instead of allowing a single backup operation on each iteration,

1 Smith et al. used in their reported experiments the commercial CPLEX solver whereas we used
the non-commercial lpsolve solver.

6

we are willing to execute a predefined numberk of backups. We maintain a priority
queue of potential belief states, and update thek belief states with highest priorities.
A backup is calledsuccessfulif the resulting vectorα improves the value function for
the current belief stateb by δ. After each successful backup we assign a priorityδ to
each observed predecessor ofb in the belief space (assuming it previously had lower
priority).

Instead of computing all possible previous belief states, we keep only the prede-
cessors we have observed during the execution. This approach forces us to remember
all the belief states we have passed through, but in our experiments, we did not hit any
memory problems due to that approach.

HSVI prunes the lower bound value function V
¯

only when pointwise dominated
vectors have been found. We say thatα is pointwise dominated byα′ if for eachs,
α(s) < α′(s). While such vectors should surely be pruned, this approach does not prune
many other dominated vectors, such as vectors that are dominated by a conjunction of
two vectors. We use a more sophisticated pruning technique. For every vectorα we
maintain a witnessb (denotedwitness(α)) s.t.α was a result of a backup operation on
b. When a new vector that improves the value ofb is computed usingα = backup(b),
we scan all other vectorsα′ ∈ V

¯
and check whetherwitness(α′) is also improved by

the newly computedα. If so,α′ is removed from V
¯
.

Algorithm 2 SOVI
Input: b — a single belief point
1: UpdateV(b)
2: for i← 0 to k do
3: b′ ← belief state with maximal priority
4: UpdateV(b′)
5: priority(b′)← 0
6: V̄ ← V̄ ∪HV̄ (b)

Algorithm 3 UpdateV
Input: b — a single belief point
1: α← backup(b)
2: witness(α)← b
3: if α · b > V

¯
(b) then

4: δ ← α · b− V
¯
(b)

5: for each b′ ∈ predecessors(b) do
6: if priority(b′) < δ then
7: priority(b′)← δ
8: for eachα′ ∈ V

¯
do

9: if witness(α′) · α > witness(α′) · α′ then
10: removeα′ from V

¯11: V
¯
← V

¯
∪ {α}

7

3.1 Adapting SOVI for Non-Stationary Environments

When the environment slowly changes, the computed policy of SOVI may need adjust-
ments. Such adjustments may raise the value of an action, an operation that is automati-
cally computed by SOVI, but may also cause the decrease of the value of an action, and
hence, the decrease of a vector.

Perseus, HSVI and SOVI begin with an underestimate of the value function and
slowly raise it to meet the optimal value function. These algorithms add a new vectorα
to V only if there exists a belief stateb for which α · b is greater thanV (b). The value
function hence never decreases.

Such a decrease may be needed, for example, when the straight road to a reward
becomes blocked and the agent needs to take a longer detor. SOVI can detect this prob-
lem in the value function, where an over-optimistic vector resides withinV by checking
whether the vector can really obtain the value it promises. This is done by comparing
α · witness(α) andHV (witness(α)). If the H operator returns a value that is less
than the value ofwitness(α) according toα thenα is overoptimistic and should be
removed fromV .

We execute this check every timeα has been selected as the best vector for any
belief stateb. If α was found to be over-optimistic, it is removed fromV and a new
UpdateV operation is executed forwitness(α).

Thus, over-optimistic vectors are pruned fromV , so that the value function remains
a lower bound on the optimal value function, and hence the update step of SOVI remains
valid.

4 Experimental Results

We conducted experiments over a number of well known POMDP problems: Hallway,
Hallway2, Tiger Grid [5], Tag Avoid [8], Rock Sample5,5 and Rock Sample5,7 [9].
The observed results were very similar, so we focus more extensive experiments on the
Hallway and Hallway2 problems. For each of these problems we defined5 tracks of
changes. Each track of changes constituted of a random number of changes, starting
approximately10 steps from each other, and each lasting50 steps. Each such change
randomly picked a non-zero entry from the transition or observation matrix, defined a
new value for it, and split the difference between all other non-zero entries uniformly.
Transition to the new value is done gradually, when on each action execution, the value
is slightly modified (increased or decreased towards the target value) and other values
adjusted so that probabilities always sum up to1. Over each track of changes we exe-
cuted5 executions of SOVI and RTBSS2 for a1000 steps. After each50 steps, learning
was stopped and the current policy was evaluated for500 steps. Reported results are
averaged over these5 executions. Figure 1 and Figure 2 present the changed average
reward per action execution over time.

Most researchers use the time it took for the algorithm to execute to estimate its
performance. While execution time comparison is indeed important, it has some major
drawbacks. Time can vary greatly due to implementation; For example, choosing to
use Java or C++ or MATLAB, the CPU power and available memory — all effect the

2 We also tried to execute HSVI, but as stated before, the algorithm did not terminate within
reasonable time.

8

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 200 400 600 800 1000

(a) Changes track1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 200 400 600 800 1000

(b) Changes track2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 200 400 600 800 1000

(c) Changes track3

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 200 400 600 800 1000

(d) Changes track4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 200 400 600 800 1000

(e) Changes track5

(f) Legend for the above graphs

Fig. 1. Hallway problem: Comparing average reward over time of RTBSS and SOVI over5 dif-
ferent tracks of changes. Average reward per action (step) is plotted vs. the step number.

execution time greatly. We suggest a number of metrics that can be used to obtain a more
precise estimate. A few basic operations stand at the basis of the above algorithms.
The first, most basic, is the belief update computation —- computingbo

a,b. The most
basic implementation is using Equation 2, however, structured representations of the
transition and observation functions can speed computation considerably. Counting the
number of belief updates the algorithm has executed is hence a good measure. Likewise,
theg operation (Equation 7) is also a very basic operation that stands at the base of the
backup procedure. We thus include in our experiments comparisons using the number
of explored belief states, and the size of the value function, as well as the actual runtime
for algorithm execution.

Table 1 and Table 2 compare the performance of the RTBSS and SOVI algorithms
on the Hallway and Hallway2 problems, testing5 change tracks for each problem. All
results are averaged over5 executions for each track of changes. In the tables, time is
the average time per step in milliseconds, belief updates denotes the average number
of belief updates per step, belief points is the number of the computed belief points
during the execution, G computations is the number of times Equation 7 was executed
(not relevant for RTBSS), and|V

¯
| is the size (number of vectors) of the computed value

function (not relevant for RTBSS).

9

0

0.01

0.02

0.03

0.04

0.05

0.06

0 200 400 600 800 1000

(a) Changes track1

0

0.01

0.02

0.03

0.04

0.05

0.06

0 200 400 600 800 1000

(b) Changes track2

0

0.01

0.02

0.03

0.04

0.05

0.06

0 200 400 600 800 1000

(c) Changes track3

0

0.01

0.02

0.03

0.04

0.05

0.06

0 200 400 600 800 1000

(d) Changes track4

0

0.01

0.02

0.03

0.04

0.05

0.06

0 200 400 600 800 1000

(e) Changes track5

(f) Legend for the above
graphs.

Fig. 2. Hallway2 problem: Comparing average reward over time of RTBSS and SOVI over5
different tracks of changes. Average reward per action (step) is plotted vs. the step number.

Method Time Belief updatesBelief pointsG computations|V
¯
|

SOVI change1 186.28970.085 53,047 9846.795 34.42
RTBSS change1 364.51 5660.394 193,693 N/A N/A
SOVI change2 170.65 66.087 49,855 7082.56 30.31
RTBSS change2 302.3435798.659 188,725 N/A N/A
SOVI change3 207.4 65.675 48,552 10110.24 34.89
RTBSS change3 365.82 6583.431 178,805 N/A N/A
SOVI change4 252.06 64.49 48,121 10875.06 38.68
RTBSS change4 398.54 6683.095 188,440 N/A N/A
SOVI change5 263.96 70.54 51,445 16648.48 46.42
RTBSS change5 514.8045756.356 196,062 N/A N/A

Table 1. Hallway problem: Comparing the performance of RTBSS and SOVI over5 different
tracks of changes.

5 Conclusions and Future Work

In this paper we have presented the Simple Online Value Iteration (SOVI) algorithm,
that is heavily motivated by Smith and Simmons’s HSVI algorithm. Our approach dif-
fers from HSVI in a simplified upper and lower bound maintenance, and by allowing
additional policy updates based on priorities. HSVI is also originally presented as an
offline POMDP policy computation when we suggest adjustments to online learning.

10

Method Time Belief updatesBelief pointsG computations|V
¯
|

SOVI change1 271.71 186.34 37,167 3120.77 25.26
RTBSS change1 1231.82820.72 152,729 N/A N/A
SOVI change2 259.08 167.07 44,202 2849.88 30.1
RTBSS change2 1124.36724.22 157,901 N/A N/A
SOVI change3 943.3 177.39 42,350 3058.04 31.21
RTBSS change3 795.71 535.51 126,962 N/A N/A
SOVI change4 380.15 183.33 51,316 6037.72 40.36
RTBSS change4 1003.78848.06 118,164 N/A N/A
SOVI change5 344.39 204.02 58,830 5679.87 41.63
RTBSS change5 1781.85797.46 162,044 N/A N/A

Table 2. Hallway2 problem: Comparing the performance of RTBSS and SOVI over5 different
tracks of changes.

We show SOVI to preform well on slowly changing, non-stationary, environments,
and to outperform RTBSS, which computes a full search on each step.

We also suggest a number of metrics for comparing online solvers, as well as the
execution time, which is implementation dependant.

Future research should fully evaluate the performance of SOVI on non-stationary
environments, in both online and offline execution and compare it versus other point-
based algorithms such as HSVI, Perseus and PBVI [8].

6 Acknowledgements

Partially supported by the Lynn and William Frankel center for computer sciences, and
by the Paul Ivanier center for Robotics and Production Management.

References

1. R. E. Bellman.Dynamic Programming. Princeton University Press, 1962.
2. B. Bonet and H.Gefner. Solving large POMDPs using real time dynamic programming. In

AAAI Fall Symposium on POMDPs, 1998.
3. A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally in partially observable

stochastic domains. InAAAI’94, pages 1023–1028, 1994.
4. R. A. Howard.Dynamic Programming and Markov Processes. MIT Press, 1960.
5. M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially observ-

able environments: Scaling up. InICML’95.
6. Andrew W. Moore and Christopher G. Atkeson. Prioritized sweeping: Reinforcement learn-

ing with less data and less time.Journal of Machine Learning, 13:103–130, 1993.
7. S. Paquet, L. Tobin, and B. Chaib-draa. Real-time decision making for large pomdps. In

AI’2005, Victoria, Canada.
8. J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for

POMDPs. InIJCAI, August 2003.
9. T. Smith and R. Simmons. Heuristic search value iteration for pomdps. InUAI 2004, Banff,

Alberta, 2004.
10. M. T. J. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for

POMDPs. Technical Report IAS-UVA-04-02, University of Amsterdam, 2004.

