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Abstract. In partially observable environments effective reinforcement
learning (RL) is still a fairly open question. Most common algorithms fail
to produce good results for those problems. However, many real-world
applications are characterized by those difficult environments.
In this paper we propose the application of recurrent neural networks
(RNN) to identify in a first step the complete state space of the environ-
ment out of the only partially available information. In a second step we
apply a standard RL algorithm to the reconstructed state space. In doing
so we use the capability of RNNs to identify and simulate any dynam-
ical system. Partially observable Markov decision processes (POMDPs)
as well as RNNs are both state space models. Out of that reason RNNs
are a very appropriate and even obvious method to model reinforcement
learning problems. Further we can profit from the wide range of well-
established neural network learning and optimization methods.
We show that only minimum information of the reinforcement learning
problem is needed to achieve remarkable results. This is due to the fact,
that RNN are able to compensate missing information by building up
their own internal dynamics and memory. We demonstrate our theo-
retical results on a variation of the well-known cart-pole problem. For
the first time we reduce the observability of this example to one single
variable.

1 Introduction

In this paper we present a new approach to identify dynamical systems of par-
tially observable reinforcement learning problems in discrete time. We use recur-
rent neural networks (RNNs) as they allow for the identification of dynamical
systems in form of high dimensional, nonlinear state space models. They offer an
explicit modeling of time and memory and are in principle able to model any type
of dynamical system [Hay94; MJ99; KK01]. Further the architecture of recurrent
neural networks allow for a perfect modelling of the reinforcement learning (RL)
environment over a certain number of time steps. Our approach therefore dif-
fers from most research directions in a significant but at first sight non-obvious
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way. Instead of focusing on algorithms, we put a neural network architecture
in the foreground. This distinguishes our networks also from other works on re-
inforcement learning with recurrent networks [Gom03; Bak04; MCC97]. None
of those networks offer this explicit resemblance - in architecture and method -
to reinforcement learning. It provides us with the possibility to learn and map
efficiently the full environment of the RL problem. There have been some other
approaches with similar intentions, e.g. [Sch91], but they all do not have that
explicit advantage in architecture and structure.

Besides the architectural advantage we focus on partial observability. We
point out that RNNs are highly applicable to those problems as they are able
to reconstruct a transformation of the original state space with only a minimum
number of available information.

The paper is divided into five parts. Subsequent to the introduction section
two gives a short outline about recurrent neural networks. In section three we
then demonstrate in detail how we use RNNs for an optimal state space recogni-
tion of reinforcement learning problems and the handling of partial observability.
Section four underlines our theoretic results by an application to the well known
cart-pole problem. A conclusion including an outlook on further research is given
in section five.

2 Recurrent Neural Networks (RNN)

Reinforcement learning problems basically consist of an agent interacting with
its environment by carrying out different actions. The evolvement of the envi-
ronment – resulting from the interaction with the agent – can be described as
an open dynamical system. For discrete time grids (t = 1, . . . , T and T ∈ N) this
can be represented as a set of equations (Eq. 1), consisting of a state transition
and an output equation [Hay94; KK01]:

st+1 = f(st, ut) state transition
yt = g(st) output equation (1)

The state transition is a mapping from the present internal hidden state of
the system st and the influence of external inputs ut, to the new state st+1.
In the context of reinforcement learning the inputs ut are the agent’s (partial)
information about the environment and his chosen action. The hidden states st

should not be confused with the current state of the environment. These internal
states are rather necessary to develop the evolvement of the environment. The
output equation computes the observable output yt. In our framework the output
is equivalent to the resulting change of the system, in other words the subsequent
state of the environment.

The task of identifying a dynamic system of Eq. 1 can be stated as the prob-
lem to find (parameterized) functions f and g such that a distance measurement
(Eq. 2) between the observed data yd

t and the output yt of the model is minimal:
T∑

t=1

(
yt − yd

t

)2 → min
f,g

(2)
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The identification task of Eq. 1 and 2 can be easily modeled by a recurrent
neural network of the form

st+1 = tanh(Ast + c + But) state transition
yt = Cst output equation (3)

where A, B and C are weight matrices of appropriate dimensions and c is a bias,
which handles offsets in the input variables ut [ZN01; Hay94].

By specifying the functions f and g as a recurrent neural network with weight
matrices A,B and C and a bias vector c, we have transformed the system iden-
tification task of Eq. 2 into a parameter optimization problem:

T∑
t=1

(
yt − yd

t

)2 → min
A,B,C,c

(4)

This parameter optimization problem (Eq. 4) is solved by finite unfolding in
time using shared weight matrices A, B and C [RHW86; Hay94]. Fig. 1 depicts
the resulting spatial neural network architecture [ZNG02]. The recurrent network
is trained with error backpropagation through time, which is a shared weights
extension of standard backpropagation [RHW86; Hay94].
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Fig. 1. Recurrent neural network unfolded in time.

The autonomous part of the RNN is extended into the future by so-called
overshooting [ZN01], i.e. we iterate matrices A and C in future direction (see Fig.
1). In doing so we get a whole sequence of forecasts as an output. More important
overshooting forces the learning to focus on modeling an internal autonomous
dynamics of the network, i.e. it supports the extraction of useful information
from input vectors which are more distant to the output.1 In doing so also the
learning of false causalities will be decreased. Hence, overshooting regularizes the
1 Backpropagation learning usually tries to model the relationship between an output

and its most recent inputs because the fastest adaptation takes place in the shortest
path between input and output.



4

learning and thus improves the model’s performance [ZN01]. Note, that because
of shared weights no additional parameters are used.

RNNs are - in contrast to feedforward networks - able to explicitly model
memory. This allows for the identification of inter-temporal dependencies. Addi-
tionally, as the weights are shared, multiple gradient information is available for
the learning. As a consequence, potential overfitting is not as dangerous as for
example in the training of feedforward networks. In other words, due to the inclu-
sion of the temporal structure into the network architecture, recurrent networks
are applicable to tasks where only a small training set is available [ZN01]. This
is especially important for reinforcement learning problems based on a limited
number of time steps.

For a more detailed description about RNNs please refer to [ZN01] or [ZGST05].

3 Application of RNNs to RL Problems

As we have argued in section 2 RNNs offer an ideal framework to model dynam-
ical systems. We now use this quality to simulate the system evolvement of a
RL problem. Comparing the two methods, RNNs and RL already show a lot of
structural resemblance. We want to profit from those to achieve a good system
simulation including an optimal state space recognition.

First of all both techniques are state space models. We can therefore easily
map the states of a reinforcement learning problem into the architecture of a
RNN. The available current state information and the chosen action will be
given to the network as external inputs ut. As targets yd

t the network gets the
available state information of the subsequent time step at a time. The RNN
is then able to learn the underlying dynamics of the reinforcement learning
problem. Here it is important to note that the training of the RNN is easily
done with backpropagation through time [RHW86; Hay94] and therefore - in
opposition to an often stated opinion - not a major problem.

A strong advantage of the application of recurrent neural networks to rein-
forcement learning is the fairly easy handling of partially observable problems.
Most RL methods are unable to treat those problems as – with an incomplete
information about the environment – they cannot identify the underlying dy-
namics. In contrast RNNs are still able to learn the dynamics although they
only get a small part of the system information. The point is that due to the
techniques of unfolding in time and overshooting (see sec. 2) recurrent neural
networks can develop autonomously the complete system dynamics. They build
up a finite memory and learn intertemporal dependencies out of the available
data to compensate the missing information at each time-step [MPKK99]. In do-
ing so they can reconstruct the original state space of the reinforcement learning
environment in their internal state s.

In a second step we then apply common reinforcement learning algorithms
to that reconstructed internal state space to learn the optimal policy.
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4 The partially observable cart-pole

The cart-pole problem has been extensively studied in control and reinforcement
learning theory. Since more than 30 years it serves as a benchmark for new ideas,
because it easy to understand and also quite representative for related questions.
The classical problem has been completely solved in the past. Sutton [SB98] for
example demonstrated that the pole can be balanced for an arbitrary number
of time steps within a remarkable short training sequence. Consequently the
original (simple) problem is not of interest any more.

There are two major directions to make the cart-pole problem more challeng-
ing. One is to make the task itself more difficult by taking for example two poles
[Gom03] or regarding a two dimensional cart [GM98]. Some of these (increasingly
difficult) variations of the problem are summarized in [Wie91]. The other one is to
make the original problem only partially observable [MPKK99; Bak02; Gom03].
The latter is the one we will focus on.

4.1 Problem description

The classical cart pole problem consists of a cart which is able to move on a
bounded track and trying to balance a pole on its top. This cart-pole system is
illustrated in Fig. 2 [MPKK99].

x

θ

F

Fig. 2. The cart-pole problem system.

The system is fully defined through four variables (t = 1, . . . , T ):

xt := horizontal cart position
ẋt := horizontal velocity of the cart
θt := angle between pole and vertical
θ̇t := angular velocity of the pole

(5)

The goal is to balance the pole for a preferably long sequence of time steps
without moving out of the limits. Possible actions are to push the cart left or
right with a constant force F . The pole tilts when its angle θt is higher than 12
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degrees. Either then or when the cart hits one of the boundaries, the system is
punished with a negative reinforcement signal. In all other cases the reward is
zero.

As already mentioned the system has been extensively studied in its several
forms. Still, so far nobody tried to reduce the observability to only one single vari-
able. When the system was studied as partially observable, one usually omitted
the two velocities, ẋt and θ̇t, i.e. only the cart’s position and the angle between
the pole and the vertical where given as inputs [MPKK99; Bak02; Gom03]. Solv-
ing this problem is not very difficult because the model or algorithm just needs
the memory of one past time step to calculate the missing information.

As we want to fully profit from the advantages of recurrent neural networks
(unfolded in time) we only make the horizontal position of the cart, xt, observ-
able. All other information is absolutely unknown to the system.

In a second experiment we even complicate the problem by adding noise
on the only observable variable xt (Eq. 5), which makes it not only partially
observable but also covered by noise. This implies that the learning method
cannot absolutely rely on the single information which it receives about the
cart-pole’s environment but has to extract the true underlying dynamics.

4.2 Model description

To solve the problem described in subsection 4.1 we use a RNN (sec. 2) to de-
velop the full dynamics of the cart pole system. Input ut and target yd

t consist of
the the horizontal cart position xt as well as two simple preprocessing transfor-
mations of it. The input ut also contains the agent’s action. No other information
is observable by the model. We limit the internal state space st to four neurons.
In doing so we want the network to reconstruct in its internal state space the
complete but only partially observable environment (Eq. 5). We unfold the net-
work ten time steps into the past and future. Our results have shown that this
memory length is sufficient to identify the dynamics. To make the network in-
dependent from the last unfolded time state we use a technique called cleaning
noise as a start initialization [ZGST05]. The network is trained by backpropaga-
tion through time [RHW86; Hay94] until a minimum error between output and
target is achieved.

In a second step we extract the evolved state space from the RNN. We then
use a generalized form of Samuel’s adaptiv heuristic critic (AHC) algorithm
[Sam59], which belongs to the class of temporal difference learning methods
[Sut87]. Note, that we have to start the algorithm with an already filled lag
structure. Otherwise there is a high probability that the algorithm is faced with
an unstable pole in his first learning step as a minimum of ten uncontrolled time
steps would be necessary to fill all the lags.

4.3 Results

We used several different test sets to train our networks. As a first result we
confirmed that the length of the test set is more important than the number of



7

training epochs. The more different information about the single input variable
the network experiences the more it is able to reconstruct the original (complete)
state space.

Fig. 3 points out how well the RNN can identify the underlying dynamics.
The four plots show the correlation between the original state space variables of
the environment, xt, ẋt, θt, θ̇t, (Eq. 5) and the best linear combination of the re-
constructed state space variables (st)1, . . . , (st)4 and their squares (st)21, . . . , (st)24
in each case. The high correlation for each state space variable demonstrates the
reconstruction quality of the RNN. It also strongly supports the use of RNNs
for partially observable reinforcement learning problems.
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Fig. 3. Correlation between the best quadratic combination of the reconstructed state
space variables (st)1, . . . , (st)4 of the RNN and the original ones (Eq. 5).

We compared the results of our approach to a direct application of the AHC
algorithm to the problem, which means without using a recurrent neural network
in the first step. Note, that no adaptive binning has been used. In both cases we
took the discretization of the state space which yielded to the best results.

Fig. 4 plots the achieved number of steps, the pole could be balanced, to
the number of trials. We stopped the training as the first method was able to
balance the pole for a minimum of 1000 steps. The graphic (Fig. 4) shows how
our RNN approach outperforms a direct application of the AHC algorithm.
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Fig. 4. Comparison of the performance in the partially observable cart-pole problem of
our RNN approach (upper curve) to a direct application of the AHC algorithm (lower
curve).

The better performance of our approach becomes even more obvious as we
add noise to the single observation xt. We tried different noise levels of 1%, 2%
and 5%. Already for a 1% noise level a direct application of the AHC algorithm
fails almost completely to learn the task (Fig. 5 (lower curve)), whereas our
RNN approach was – for all tested noise levels – able to balance the pole for at
least more than a hundred time steps (Fig. 5 (upper curve)). This result well
demonstrates that the RNN is still able to identify and reconstruct the original
state space of the environment (Eq. 5) although the only observable information
is covered by noise.

In our first tests with noise on the start initialization or on the dynamics itself
we achieved similar results. Still these applications need some further research
and examination.

5 Conclusion and Outlook

In this paper we focused on solving partially observable reinforcement learning
problems with recurrent neural networks. We outlined the principal theory about
recurrent neural networks and argued that there is a structural resemblance
to reinforcement learning. We further pointed out that with this approach we
can profit from the numerous well-established tools and methods of the neural
network theory. The application to the well-known cart-pole problem underlined
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Fig. 5. Comparison of the performance with a 1% noise level on the single observable
variable xt. Our RNN approach (upper curve) is able to balance the pole for at least
a hundred time steps whereas a direct application of the AHC algorithm (lower curve)
fails almost completely to learn the task. The curve has been averaged over 50 trials.

our theoretical results. We achieved remarkable results and could outperform
standard reinforcement learning algorithms.

The presented results and approaches are a first step. We are convinced that
the application of recurrent neural networks to reinforcement learning can be
improved and extended to other related problems. Therefore we see our results
as a starting point to further research. One aspect is the use of higher developed
neural network architectures like error correction [ZNG02] or dynamical consis-
tent neural networks [ZGST05]. Another one are high dimensional problems as
most reinforcement learning algorithms fail for larger dimensions (Bellmann’s
”curse of dimensionality”). In contrast recurrent neural networks work well for
higher dimensions. They even offer a technique called node pruning to determine
an optimal state space recognition which often goes hand in hand with a state
space reduction or minimization. First results in this area have shown that the
number of state space dimensions can be reduced by at least 50%.
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