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Abstract. A natural way to compare learning methods in non-
stationary environments is to compare their regret. In this paper
we consider the regret of algorithms in adversarial multi-armed bandit
problems. We propose several methods to improve the performance of
the baseline exponentially weighted average forecaster by changing the
payoff-estimation methods. We argue that improved performance can
be achieved by constructing payoff estimation methods that produce
estimates with low variance. Our arguments are backed up by both
theoretical and empirical results. In fact, our empirical results show that
significant performance gains are possible over the baseline algorithm.

1 Introduction

Regret is the excess cost incurred by a learner due to the lack of knowledge
of the optimal solution. Since the notion of regret makes no assumptions on
the environment, comparing algorithms by their regret represents an appealing
choice for studying learning in non-stationary environments.

In this paper our focus is a slightly extended version of the adversarial bandit
problem, originally proposed by Auer et. al [1]. The model that we start from is
best described as a repeated game against an adversary using expert advice. In
each round a player must choose an expert from a finite set of experts. In the
given round the selected expert advices the player in playing a game against the
adversary. At the end of the round the reward associated with the outcome of
the game is communicated to the player. The player’s goal is to maximize his
total reward over the sequence of trials. Of course, the total reward depends on
how strong the individual experts are and hence, a more reasonable criterion is
to minimize the loss of the learner over the total reward of the best expert, i.e.,
the regret. If all the experts achieve a small total payoff then this goal is easy to
achieve. However, if at least one the experts performs well then the algorithm
must quickly identify this expert.

In this paper we are concerned with the performance of a particular class of
algorithms built around the exponentially weighted average forecaster, Exp3 [3,
9, 1].1 Despite the appealing theoretical guarantees that were derived beforehand

1 Note that the although the basic setup allows for non-stationary environments, it
is the algorithm designer’s sole responsibility to come up with sufficiently strong
experts. An alternative approach explored in [7] is to change the definition of regret
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for this algorithm, little is known about its performance in real-world problems,
our primary interest in this paper. In fact, our original interest was to apply
on-line prediction and in particular Exp3 to opponent modelling in poker. Our
rather unsatisfactory initial empirical results led us to the consideration of pos-
sible ways to improve the performance of Exp3.2 The primary purpose of this
paper is to show that such performance improvements are indeed possible. In
particular, we propose several methods for this purpose.

In order to present the main idea underlying these constructions let us note
that Exp3 works by constructing a payoff estimate for each of the experts and
these estimates are used as the input of the exponentially weighted forecaster.
The payoff estimates proposed in [1] have a specific form. Here, we argue for the
importance of alternative payoff estimation methods that can exploit additional
information often available to the player.

One such case that we consider here is when the experts are randomized and
action probabilities are available to the player for any expert (not just the se-
lected one). Another case is when additional side information (e.g. the cards) is
available before each round. Under such assumptions we propose two alternative
payoff estimation methods and compare the performance of the resulting algo-
rithms with that of the baseline in a simpler domain (dynamic pricing) and in
full poker. The results show that the alternative methods are capable of improv-
ing performance substantially. Our explanation of the improved performance is
that the alternative payoff estimation methods give payoff estimates with lower
(predictable) variance than the original estimate. In order to back up this hy-
pothesis bounds are derived on the performance of a generalized form of Exp3
that explicitly include the (predictable) variance of the payoff estimates. The
proofs are obtained by a careful modification of the original proof of [1] by re-
placing the (conservative) pointwise bounds of the second order quantities of the
payoff estimates by their expectations at appropriate points. The importance of
our results is that they show that it is possible to reduce the regret of the basic
Exp3 algorithm by considering alternative payoff estimation methods.

The organization of the article is as follows: In Section 2 we introduce the
framework, the notation and the basic algorithm, Exp3G, that is just Exp3
with generic payoff estimates. Our theoretical results are given in Section 3. The
alternative payoff-estimation methods are presented in Section 4. Results in two
domains, dynamic pricing and opponent modelling in Omaha Hi-Lo Poker are
given in Section 5, whilst our conclusions are drawn in Section 6.

by allowing for the possibility that different experts (from a base set of experts) are
used in different time-segments. Here, for the sake of simplicity we do not consider
this case. However, we expect that our results generalize to this case without much
difficulties.

2 Such negative results have been documented recently, independently of us, in [6],
but in a significantly simplified poker-variant.
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2 Regret-minimization
We model on-line learning as a repeated game against an adversary with random
payoffs. In our model the adversary is assumed to be oblivious, i.e. not allowed to
adapt to the player, but otherwise is not restricted in any way.3 In each time step
the player may choose an expert from a finite set of experts. For simplicity, we
label the experts by the integers 1, . . . , N . The protocol of the game is as follows:
At time t, the environment is put in some state about which some information,
Ct, is communicated to the player. The player then selects an expert, It, which in
turn suggests an action At. Next, Nature generates some situation Yt ∈ Y. This
situation Yt may depend (randomly) on the sequence of past side information
and situations, as well as time. Based on It and Yt the player receives a payoff,
gt = g(It, Yt).

As an example of a game of this kind consider dynamic pricing with multiple
products: Let R(p1, p2, v) be the payoff of the vendor assuming that she selected
the price p1 and the customer selected the price p2 and the value of the product
to be sold is v. The particular form of R is not important for us, but for the
sake of specificity choose e.g. R(p1, p2) = (p1 − v)I(p1 ≤ p2) − αvI(p1 > p2),
where I(true) ≡ 1 and I(false) ≡ 0. Let us denote the price selected by expert
i by A

(i)
t . Further, let Bt denote the price selected by the customer. Obviously,

the payoff of the vendor in the tth step is gt = R(AIt
t , Bt, Ct). Hence, defining

Yt = (Ct, Bt, A
(1)
t , . . . , A

(N)
t ) and g(i, c, b, a1, . . . , aN ) = R(ai, b, c) we get that

gt = g(It, Yt) as expected.4

Denoting by Gi,n the total payoff that the player would have received had she
chosen the ith expert in each round and by Ĝn the actual payoff of the player,
the goal of the player is to minimize the cumulative (external) regret

max
i

Gi,n − Ĝn = max
i

n∑
t=1

g(i, Yt)−
n∑

t=1

g(It, Yt). (1)

2.1 The Exp3G Algorithm
We consider a generic version of the exponentially weighted average fore-
caster where our main assumption is that in each time-step, the player is
3 The case when the adversary can adapt to the choices of the predictor was re-

cently considered in [5], where it was noted that the performance of external regret-
minimization algorithms can be arbitrarily far from the optimum. Extension of the
present work to such problem is far from trivial (amongst other things since the
definition of regret there is fundamentally different from the one considered here)
and is left for future work. In our opinion, since many practical problems can be
closely modelled as games against oblivious adversaries, the considered problem is
still of sufficient interest.

4 If the games played in the rounds are played in a reactive environment (like in

poker), the ith expert’s action A
(i)
t will actually be a policy that governs the selection

of the “low-level” actions. Likewise, Bt will be a policy of the environment, plus
the additional necessary (often random) information (e.g. the sequence of random
numbers used to draw actions for both the adversary and the player) that together
fully determine the course of game.
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capable of computing an unbiased estimate, g′t(i, Yt), of the expected payoffs
gt(i, Ct) = E[g(i, Yt)|Ct, Y t−1, It−1], i = 1, . . . , N , where Y t−1 = (Y1, . . . , Yt),
It−1 = (I1, . . . , It−1), and Ct is the information received by the player.

Note that this assumption is weaker than assuming that the player is capable
of computing an unbiased estimate of g(i, Yt), as we require only an estimate of
gt(i, Ct). Indeed, in many cases, such as in the above outlined dynamic pricing
problem, it is not possible to obtain such an estimate.5 In Section 4 we propose
several methods to obtain estimators of gt(i, Ct).

The generalized Exp3 algorithm (henceforth called Exp3G) is shown Fig-
ure 1. Exp3G is a straightforward generalization of the Exp3 algorithm of [1]:
the main differences are that we allow for additional side-information and the
payoff estimation procedure is left unspecified.6 In particular, Exp3 is obtained
if g′t(i, Yt) is defined by

g′t(i, Yt) = I(It = i)g(It, Yt)/pIt,t, (2)
where pi,t is the probability of choosing arm i in time step t. Further examples
of various estimators will be given in subsequent sections: for the results of the
next section details of these constructions are not needed.

Parameters: real numbers 0 < η, γ < 1.
Initialization: w0 = (1, . . . , 1)T ;
For each round t = 1, 2, . . .

(1) select an expert It ∈ {1, . . . , N} randomly according to

pi,t = (1− γ)
wi,t−1∑N

k=1 wk,t−1

+
γ

N
;

(2) observe gt = g(It, Yt);
(2) based on gt, Ct, compute the feedbacks g′t(i, Yt), i = 1, . . . , N ;

(3) compute wi,t = wi,t−1e
ηg′

t(i,Yt).

Fig. 1. Exp3G: Generalized Exponentially Weighted Average Forecaster

3 Variance Dependent Regret Bounds

The key ingredient of our performance bound results is that the regret is bounded
as a function of the predictable variance of the random feedbacks g′t(i, Yt). Intu-
itively, it should be clear that the growth rate of regret should depend on this
quantity, as shown in the following theorem that bounds the expected regret:

Theorem 1 Consider algorithm Exp3G and assume that in each time step the
random feedback g′t(i, Yt) is an unbiased estimate of g(i, Yt), given Ct, It−1

5 In dynamic pricing this would require the knowledge of the price offered by the
consumer, which, by assumption, is not available.

6 Actually, the setup is also close to partial monitoring, where in each step a feedback
vector is received and the main assumption is that based on this information the
player can construct unbiased estimates of the payoffs of the experts [9].
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and Y t−1, and that the predictable variance of g′t(i, Yt) can be bounded uni-
formly by σ2: Var[g′t(i, Yt) |Ct, I

t−1, Y t−1] ≤ σ2. Further, let B be an upper
bound on |g′t(i, Yt)| and assume that E[g(i, Yt)|Ct, I

t−1, Y t−1] ≤ 1. Let Gin =
E[
∑n

t=1 g(i, Yt)] be the expected cumulative gain assuming that option i is se-

lected in each round, and let Ĝn = E[
∑n

t=1 g(It, Yt)] denote the expected cumu-
lative gain of Exp3G. Assume that η ≤ (

√
5− 1)/(2B). Then

max
i

Gin − Ĝn ≤ γn +
lnN

η
+ ηn(1 + σ2). (3)

Further, for n ≥ ((3 −
√

5)B2 lnN)/(2(1 + σ2)), with the choice η =√
lnN/(n(1 + σ2)), and γ = 0, maxi Gin − Ĝn ≤

√
(1 + σ2)n lnN.

Note that under the conditions of the theorem the ‘explicit’ exploration term
γ/N of pi,t can be eliminated without increasing the rate of the regret above√

n. Actually, the upper bound is minimized when γ is zero.7 Clearly, it is the
assumption that the predictable variance of the estimates of the payoffs can be
bounded uniformly that allows one to drop the exploration term. Indeed, in the
case of partial monitoring studied by [9] and later by [4], this assumption does
not necessarily hold with γ = 0 since then the option choice probabilities pi,t

can become arbitrarily small and in these problems g′t(i, Yt) is constructed by
dividing the observed payoff by pIt,t.

Note that the bound scales with the bound on the predictable variance, σ as
promised. However, the constant factor obtained with σ = 0 is

√
2 times larger

than the best known bound for the full information case.

Proof. As it is usual in the study of exponentially weighted forecasters, we let
Wt =

∑N
i=1 wi,t and consider the evolution of ln(Wt/Wt−1). By letting G′

i,n =∑n
t=1 g′t(i, Yt) and using

∑N
i=1 eηG′

i,n ≥ maxi eηG′
in , due to the monotonicity of

the logarithm function we get

ln(Wn/W0) ≥ η max
i

G′
in − lnN. (4)

Now, let us bound ln(Wt/Wt−1) from above. By our assumptions on η,
|ηg′t(i, Yt)| ≤ 1. Exploiting the inequality ex ≤ 1 + x + x2, which holds
when x ≤ 1 and ln(1 + x) ≤ x, which holds when x ≥ −1, elementary algebra
yields

ln
Wt

Wt−1
≤ η

1− γ

(
N∑

i=1

pi,tg
′
t(i, Yt) + η

N∑
i=1

pi,tg
′
t(i, Yt)2

)
.

Taking the sum of this expression w.r.t. t and combining the resulting inequality
with (4) and reordering the terms gives (1 − γ) maxi G′

in −
∑

t,i pi,tg
′
t(i, Yt) ≤

ln N
η + η

∑
t,i pi,tg

′
t(i, Yt)2. Now, using that the maximum of the expecta-

tion of some random variables is not larger than the expected value of

7 Note that this does not mean that choosing γ = 0 gives the smallest regret. In fact,
our observation is that γ > 0 often helps the algorithms.
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their maxima, E[Gi,n] = E[G′
i,n] and E[

∑
t,i pi,tg

′
t(i, Yt)] = Ĝn (this fol-

lows by the assumptions that the random feedback g′t(i, Yt) is an unbiased
estimate of the expected value of g(i, Yt) given Ct, Y

t−1 and It−1), one ob-
tains (1 − γ) maxi=1,...,N Gin − Ĝn ≤ ln N

η + ηE[
∑

t,i pi,tg
′
t(i, Yt)2]. Hence by

E[g′t(i, Yt)2|Ct,Ht−1] = Var[g′t(i, Yt)|Ct,Ht−1] + E[g′t(i, Yt)|Ct,Ht−1]2, where
Ht−1 = (Y t−1, It−1) denotes the history up to time t, the bound on the pre-
dictable variance on g′t(i, Yt) and |E[g′t(i, Yt)|Ct,Ht−1]| = |E[g(i, Yt)|Ct,Ht−1]| ≤
1, we get that E[g′t(i, Yt)2|Ct,Ht−1] ≤ σ2 + 1. Exploiting that by construction
pi,t depends only on Y t−1, It−1 and does not depend on It, Yt and

∑N
i=1 pi,t = 1,

we have that E[
∑

t,i pi,tg
′
t(i, Yt)2] ≤ n(1+σ2). The bounds stated in the theorem

now follow from Gi,n ≤ 1.

Using the bounds of the previous theorem it is also possible to obtain bounds for
the (random) regret defined in (1). Such bounds can be derived using versions
of the Hoeffding and Bernstein maximal inequalities that work for bounded
martingale difference series. In particular, the following result can be obtained:8

Theorem 2 Assume that g′t, g, satisfy the conditions stated in Theorem 1.
Further, assume that |g(i, Yt)| ≤ 1. Then, for any δ > 0, n ≥ ((3 −√

5)B2 lnN)/(2(1 + σ2)) with the choice η =
√

lnN/(n(1 + σ2)), the following
bound on the regret of Exp3G holds with probability at least 1−δ: maxi Gin−Ĝn ≤
n1/2

(
((1 + σ2) ln N)1/2 + (2 +

√
2σ)ln

(
N+1

δ

)1/2
)

+ 2(B+1)
3 ln

(
N+1

δ

)
.

By introducing an appropriate time dependent learning rate ηt and using the
proof technique of [2] it is possible to derive a version of the above theorem that
achieves the same order of regret uniformly in time. Then a simple application
of the Borel-Cantelli lemma implies that under our conditions Exp3G is Hannan
consistent, i.e., the average regret, (1/n)(maxi=1,...,N Gi,n − Ĝn), converges to
zero with probability one. Further, the rate of convergence is O(n−1/2).9

4 Payoff Estimation Methods

In this section we give three construction for g′t(i, Yt). Remember that the goal
is to construct g′t such that E[g′t(i, Yt)|Ct,Ht−1] = E[g(i, Yt)|Ct,Ht−1].
Likelihood Ratio Based Estimates For our first construction we assume that
the experts are randomized and the action selection probabilities of any of the
experts can be queried. The likelihood ratio based payoff estimation method

8 The standard proof is omitted due to the lack of space.
9 Note that in the case of the Exp3 algorithm the predictable variance of the payoff

estimates will be roughly equal to 1/pi,t. Hence, in this case letting γ scale with 1/
√

n
gives a variance that grows with the length of the period. A special construction that
biases the estimates of the payoffs was introduced in [1] to control the variance of the
payoff estimates. In our problems, where the variance is bounded by construction
such a bias term is not needed. Actually, our experiments (not given here due to the
lack of space) show that the regret increases with the bias term.
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works as follows: Let the probability that action a is selected by expert i and
given the side information c be denoted by πi(a|c)10 and consider

g′t(i, Yt) =
πi(At|Ct)
πIt(At|Ct)

g(It, Yt), (5)

where At is the action selected by expert It in round t. Assume that the set of
actions is finite and that πi(a|c) > 0 for all i, a, c. Then, E[g′t(i, Yt)|Ct,Ht−1] =∑

j pjt

∑
a P(At = a|Ct, It = j, Ht−1)E[g′t(i, Yt)|Ct, It = j, At = a,Ht−1]. Now,

according to our assumptions E[g′t(i, Yt)|Ct, It = j, At = a,Ht−1] is well-defined
(since πi(a|Ct) > 0) and equals πi(a|Ct)/πj(a|Ct)E[g(j, Yt)|Ct, It = j, At =
a,Ht−1]. Since P(At = a|Ct, It = j,Ht−1) and 1/πj(a,Ct) cancel each other,
we get the desired equality. Let us further note that g′t can be bounded by
supi,j,a,c πi(a|c)/πj(a|c) and a uniform bound on the predictable variance of
g′t(i, Yt) can be derived provided that the predictable variance of g(i, Yt) is
bounded (this follows when e.g. Yt can take on finite values, or when g(i, Yt)
is uniformly bounded as it was assumed in Theorem 2).

Let us make some remarks about the generality of this method. Assume for
example that in each time step the payoff of the player results from following
some policy in an episodic, multi-stage partially observable Markovian Decision
Problem. Assume that the experts suggest some feedback policy. Then, it can
be shown as e.g. in [8] that even when the player does not know the transition
probabilities he is able to compute the appropriate likelihood ratios. Hence, this
construction can be used e.g. in opponent modelling in (even unknown) Markov
games. This will be exploited in our second experimental domain.
Reversed Importance Sampling: Algorithm LExp Motivated by the the-
oretical results of the previous section it looks a sensible idea to keep the pre-
dictable variance of g′t(i, Yt) as small as possible. It is clear that the predictable
variance can become large when the ratio πi(a|c)/πIt(a|c) is large. Now, let us
observe that modifying the feedback by the said likelihood ratios can be thought
of as a ’reversed’ importance sampling: reversed in the sense that in this case it
is not the sampling distribution that is controlled, but the function to be inte-
grated. In importance sampling variance is reduced by drawing samples to those
part of the domain where the function varies a lot (the optimal sampling density
is proportional to |f |, where f is the function to be integrated). Since we cannot
control the samples, we modify the function to be integrated so that it assumes
large values where the samples concentrate and it becomes small (actually zero
in the construction below) otherwise. This leads to the following modification of
the likelihood weighting scheme:

Let φt(k, a, i) = I(πk(a|c)pk,t < πi(a|c)pi,t) and define

g′t(i, Yt) =
(1− φ(It, At, i))∑N

j=1 pj,t(1− φ(j, At, i))

πi(At|Ct)
πIt

(At|Ct)
g(It, Yt). (6)

The purpose of the modification is to make g′t zero (small) for those ‘rare’
events when φ(It, At, i) = 1. The “missing mass” must then be compensated
10 The trivial extension when π depends on past information is omitted due to the lack

of space.
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for. This is achieved in the above construction by multiplying the feedbacks by
1/(
∑N

j=1 pj,t(1− φ(j, At, i))). Assuming sufficient regularity, one can show that
this estimate satisfies the desired conditions. The algorithm that uses g′t as de-
fined above will be referred to in the description of the experiments as LExp.
We note that the idea of nullifying/discounting feedbacks of rare events can be
generalized to other estimation problems.
Compensation for the Expected Payoff: Algorithm CExp3 Another way
to control the variance is to compensate the random feedbacks g′t(i, Yt) for the
expected payoff given the side information Ct. It should be clear that e.g. in
dynamic pricing the product Ct controls to a large extent the distribution of
the actual payoffs g(i, Yt). Hence, instead of the actual payoffs it makes sense to
use the payoffs compensated for Ct. This can be achieved by defining gc(i, Yt) =
g(i, Yt)−r(Ct), where r(Ct) represents the mean payoff when seeing Ct. Similarly,
g′t(i, Yt) (of e.g. Equation 5) can be modified by subtracting r(Ct) from it. This
modification is meant to reduce the predictable variance Var[g′t(i, Yt)|Y t−1, It−1]
of g′t. An analysis entirely analogous to that of presented in Theorem 1 can be
used to show that the bound on the actual regret does depend on this quantity,
showing that compensating for the mean expected payoffs given side information
is a reasonable strategy. Intuitively, the method works by compressing the range
of payoffs. It should be clear that when a regret-minimization algorithm is run
with the modified payoffs and if the algorithm is guaranteed to achieve a bound
less than say K then the same bound applies to the original regret. This follows
because Gc

i,n
def=
∑n

t=1 gc(i, Yt) = Gi,n−
∑n

t=1 r(Ct) and Ĝc
n

def=
∑n

t=1 gc(It, Yt) =
Ĝn −

∑n
t=1 r(Ct) and thus maxi Gc

i,n − Ĝc
n = maxi Gi,n − Ĝn.11 This algorithm

will be referred to in the experiments as CExp3.

5 Experiments

The purpose of the experiments is to illustrate that the proposed method can
indeed be used to improve the performance of Exp3. No claim is made on whether
the algorithms considered for a particular domain represent the best fit: The
domains simply serve to compare Exp3 with its descendants.12 We will also
show empirically that the estimates are unbiased and have reduced variance. In
the experiments the parameters η, γ were tuned to minimize the regret of Exp3.
The same set of parameters were then used for the competing alternatives of
Exp3G.
11 We note that in some cases it is possible to implement compensations without intro-

ducing any bias. This is the case for the multi-armed bandit problem where g′t(i, Yt)
can be replaced by e.g. g′t(i, Yt)− (N−1)/Nr(Ct)/pIt,t when i = It, and by r(Ct)/N
when i 6= It.

12 In fact, both domains are stationary and stochastic. However, experiments with non-
stationary versions of these problems yielded very similar results. In this paper we
stick to the simpler domains to squeeze in the experiments into the limited space
available. Results of the extended experiments will be given in the extended version
of this paper available from the authors’ homepages.
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5.1 Experiments: Dynamic Pricing
In this section the performance of the proposed techniques is illustrated on the
dynamic pricing problem with multiple products. In the particular instance that
we consider here the vendor sets the price of the product, p1, in the range of
[0, 1] and the customer decides to buy it or not. If the transaction occurred, the
vendor receives a payoff equal to the price requested. Otherwise, the payoff is a
fraction of the product value, 0.9v, where the value of the product, v, is known
to both parties.

In our experiments, the customer offers a price p2, which is constructed by
drawing a random number b from the Bernoulli distribution, B(100, 0.5), and
setting p2 = (b−50)/100+1.1v. The vendor is advised by five experts that select
prices at random according to some triangular densities. A parameter b controls
the size of the support of the underlying densities (larger b means more random-
ness in the expert’s suggestions). The first three experts use symmetric triangular
densities with supports of size 2b. The mean values of the underlying distribu-
tions are v, 1.1v, and v+2 for expert one, two and three, respectively. The fourth
and fifth experts use asymmetric triangular densities that are obtained from the
symmetric ones by eliminating their left sides. The fourth expert chooses values
in the range [0.9v, 0.9v + b], whilst the last expert chooses values from the range
[v, v + b], with modes 0.9v + b and v + b, respectively.

We have experimented with three algorithms, Exp3, CExp3, and LExp. For
CExp3 the payoff is compensated by subtracting v from the observed payoff. We
considered two variants of the problem: in the first case the randomness of the
experts’ advice is low (b = 0.05), whilst in the second case randomness is high
(b = 0.3). Table 1 gives the estimated expected value and standard deviation
of g′t(i, Yt) (in this case Ct = v, the expert index i corresponds to the columns)
for the two problem variants. The expected values and variances of g(i, Yt) are
also provided in the tables in the respective last rows. It can be readily observed
that the estimated expected values are close to each other as expected (since
the algorithms do not introduce any bias). In addition, both CExp3 and LExp
reduce the variance of the estimates considerably as compared to Exp3. The
average regret per game of the algorithms as a function of rounds is plotted in
Figure 2. Notice that CExp3 beats Exp3 in all cases by a considerable margin.
LExp performs similarly to Exp3 in the low-expert-noise (b = 0.05) case, whilst
in the case of high expert-noise (b = 0.3) the performance of LExp approaches
that of CExp3 and both beat Exp3 with a considerable margin. In particular,
the difference in the performance of CExp3 and Exp3 is significant in both
cases, whilst the difference between the performance of LExp and Exp3 is not
significant in the first case and is significant in the second case at the level
p = 0.99.

5.2 Experiments with Opponent Modelling in Omaha Hi-Lo Poker
In this section we study how the algorithms considered can be used for opponent
modelling in a particular poker variant. Omaha Hi-Lo Poker is a card game
played by two to ten players. At the start each player is dealt four private cards,
and at later stages five community cards are dealt face up (three after the first,
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b = 0.05
E[g′

t(i, Yt)] i=1 i=2 i=3 i=4 i=5
Exp3 0.388 0.399 0.401 0.371 0.396
CExp3 0.390 0.399 0.398 0.371 0.398
LExp 0.390 0.402 0.400 0.368 0.399
E[g(i, Yt)] 0.390 0.400 0.399 0.371 0.399

√
Var[g′

t(i, Yt)] i=1 i=2 i=3 i=4 i=5
Exp3 1.782 1.435 1.427 2.097 1.573
CExp3 0.467 0.476 0.473 0.332 0.472
LExp 0.739 0.788 0.500 1.671 0.688√

Var[g(i, Yt)] 0.143 0.148 0.145 0.129 0.144

b = 0.3
E[g′

t(i, Yt)] i=1 i=2 i=3 i=4 i=5
Exp3 0.338 0.351 0.347 0.385 0.383
CExp3 0.343 0.354 0.348 0.381 0.382
LExp 0.343 0.356 0.351 0.383 0.384
E[g(i, Yt)] 0.343 0.356 0.350 0.383 0.384

√
Var[g′

t(i; Yt)] i=1 i=2 i=3 i=4 i=5
Exp3 2.107 1.929 2.014 1.046 1.169
CExp3 0.735 0.724 0.726 0.744 0.745
LExp 0.856 0.573 0.651 0.475 0.412√

Var[g(i, Yt)] 0.153 0.151 0.150 0.141 0.143

Table 1. Monte-Carlo estimates of the payoffs, payoff estimates and their respective
standard deviations for two instances of the dynamic pricing problem that use different
sets of experts with small (b = 0.05) and large price variances (b = 0.30).

0.014

0.012

0.01

0.008

0.0060.006

0.005

0.004

0.003
 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

av
er

ag
e 

re
gr

et

iteration

b = 0.05
EXP3

CEXP3
LEXP

0.03

0.025

0.02

0.017

0.014

0.012

0.01

0.008

0.006

0.005
 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

av
er

ag
e 

re
gr

et

iteration

b = 0.3
EXP3

CEXP3
LEXP

Fig. 2. Regret curves on two instances of the dynamic pricing problem. The 95% con-
fidence intervals are also shown in the figures.
and one after the second and third betting round). In a betting round, the player
on turn has three options: fold, check/call, or bet/raise. After the last betting
round, the pot is split among the players depending on the strength of their
cards. The pot is halved into a high side and a low side. For each side the
players form a hand consisting of two private cards and three community cards.
The high side is won according to the usual poker hand ranking. For the low
side, a hand with five cards with different numerical values from Ace to eight
has to be constructed. The winning low hand is the one with the lowest high
card.

A natural performance measure of a player’s strength is the average amount
of money won per hand divided by the value of the small bet (sb/h). Typical
differences between players are in the range of 0.05 to 0.2sb/h. Due to the ran-
domness of cards, the payoff per game has a rather high variance that makes the
evaluation of the performance, and thus any algorithm that operates based on
the observed payoffs, rather slow. E.g. for showing that a 0.05sb/h difference is
statistically significant in a two player game one has to play up to 20,000 games.

One method to significantly reduce the variance of the payoffs is to use an-
tithetic dealing when in every second game each player is dealt the cards which
his/her opponent had the game before, while the community cards are kept the
same. As a result of this method the variance of payoffs is reduced by a factor
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of ca. 6. Although it is not possible to use this method in real tournaments,
we will use it in our experiments to obtain baseline results. Another way to re-
duce the variance is to compensate for the deal by subtracting from the payoff
a value that depends on the strength of the hand in the context of the commu-
nity cards and the hands of the opponents. Such a value can be estimated by
playing the game with the same cards dealt to identical (robot) players (e.g. our
poker playing program). The problem is neither can one use this technique in
real tournaments where if a player folds then there is no way to replay the game
(as the player’s cards will be unknown). Still, in our simulated it is possible to
use this method and hence it is also included for the sake of comparisons.

Opponent modelling is one of the most important aspects of poker. Our pro-
gram, MCRAISE, uses its opponent model in assessing the probability that a
particular betting sequence is played given a situation consisting of the private
cards, community cards and the betting sequences of other opponents. In poker,
it is rather common to classify (human) players according to their playing style.
Similarly, we constructed six opponent models: random assumes a zero knowl-
edge opponent (thus it will make no conclusions from the opponent’s betting
sequence), greedy assumes an opponent that plays according to the strength of
his hand disregarding the play of its opponents, smooth is a smoother version
of greedy, mcr is the generic opponent model used currently in MCRAISE, and
takes into account most of the factors relevant to the game, spsa is an opponent
model tuned against MCRAISE, and humanoid is based on the same information
as mcr but expects cautious play, typical for most human players. For each of the
opponent models our program assigns a probability to the possible actions given
the current information in the game available to the player. These probabilities
serve as the input to LExp.

In the experiments the performance of four algorithms, Exp3, aCExp3 (an-
tithetic dealing), cCExp3 (card-strength compensated method), and LExp were
investigated. As noted earlier, out of these four methods only Exp3 and LExp
are suitable for real-world plays.

In the following we present the results for playing against MCRAISE. Tests
were performed with two other opponents, with similar results obtained as those
described below. The best expert in the case studied is spsa (+0.11sb/h), followed
by mcr (0sb/h), smooth (-0.07sb/h), greedy (-0.12sb/h), humanoid (-0.22sb/h)
and random (-0.77sb/h). The average regret in the course of learning for the four
algorithms along with the probability of choosing spsa is plotted in Figure 3. Each
algorithm detects spsa as the best expert at the end, but their convergence rates
differ significantly. The two CExp3 variants converge much faster than Exp3,
while LExp converges as fast as the better of the two (aCExp3). The average
regret (of not playing with spsa) is hindered in the beginning by the exploration
of the weaker experts (especially random), but for the three variance reduction
methods the average per-round regret converges at a reasonably fast rate to
zero. The differences in the performance of Exp3 and the improved methods are
significant at the level p = 0.99. (The figures show error bars corresponding to
95% confidence intervals.)
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Fig. 3. Learning curves of the four algorithms. Left graph: regret, right graph: prob-
ability of choosing the best opponent model (spsa). Each data point is averaged over
100 runs.

6 Conclusions

In this paper we have considered regret-minimization via the use of a generalized
form of the exponentially weighted average forecaster. We have argued that in
certain problems alternative payoff estimation methods are possible that can re-
duce the variance of the payoff estimates, which, in turn may result in a decrease
of the regret. Both our theoretical and empirical results show that the proposed
methods are indeed effective in improving the performance of the baseline Exp3
algorithm.
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