
Learning in non-stationary Partially Observable
Markov Decision Processes

Robin JAULMES, Joelle PINEAU, Doina PRECUP

McGill University, School of Computer Science, 3480 University St., Montreal, QC, H3A2A7

Abstract. We study the problem of finding an optimal policy for a Partially Ob-
servable Markov Decision Process (POMDP) when the model is not perfectly
known and may change over time. To help us in this learning task we assume the
availability of an oracle, that can provide information about the underlying state.
We present the algorithm MEDUSA+, which incrementally improves a POMDP
model using oracle queries, while still optimizing the reward. Empirical results
show the response of the algorithm to changes in the parameters of a model: the
changes are learned quickly and the agent still accumulates high reward through-
out the process.

1 Introduction

Partially Observable Markov Decision Processes (POMDPs) are a well-studied frame-
work for sequential decision-making in partially observable domains[7]. Many recent
algorithms have been proposed for doing efficient planning in POMDPs [9];[10];[13].
However most of these rely crucially on having a known and stable model of the en-
vironment. On the other hand, the experience-based approaches also need a stationary
model [8];[2];[12]. Furthermore, they require very large amounts of data, which would
be hard to obtain in a realistic setup.

In many applications it is relatively easy to provide a rough model, but much harder
to provide an exact one. Furthermore, because the model may experience changes with
time, we would like to use experimentation to improve our initial model. The overall
goal of this work is to combine a partial model of the environment with direct ex-
perimentation, in order to produce solutions that are robust to model uncertainty and
evolution, while scaling to large domains. To do that, we assume that uncertainty is part
of the model and design our agent to take it into account when making decisions.

The technique we propose in this paper is an algorithm called MEDUSA+, which
is an improvement of the MEDUSA algorithm we presented in [6]. It is based onactive
learning[4], which is a well-known problem formulation in machine learning for clas-
sification tasks with sparsely labelled data. In active learning the goal is to select which
examples should be labelled by considering the expected information gain. As detailed
by Anderson and Moore [1], these ideas extend nicely to dynamical systems such as
HMMs.

We will assume in the present work the availability of an oracle that can provide
the agent with exact information about the current state, upon request. While the agent
experiments with the environment, it can ask for a query in order to obtain state in-
formation, when this is deemed necessary. The exact state information is used only to

improve the model, not in the action selection process, which means that we may have
a delay between the query request and the query processing. This is a realistic assump-
tion, since in a lot of applications (robotics, speech management), it is easy to determine
the exact states we went throughafter the experimentation has taken place.

The model uncertainty is represented by a Dirichlet distribution over all possible
models, in a method inspired from Dearden et al. [5] and its parameters are updated
whenever new experience is acquired. They also decay with time, so recent experience
has more weight than old experience: it is a useful feature when the parameters of the
POMDP are not stationary.

The paper is structured as follows. In Section 2 we review the basic POMDP
framework. Section 3 describes our algorithm MEDUSA+, and outlines modifications
that we made compared to MEDUSA. Section 4 shows the theoretical properties of
MEDUSA+. Section 5 shows the performance of MEDUSA+ on standard POMDP do-
mains. The discussion is in Section 6.

2 Partially Observable Markov Decision Processes

We assume the standard POMDP formulation (Kaelbling et al., 1998); namely, a
POMDP consists of a discrete and finite set of statesS, of actionsA and of observations
Z. It has transition probabilities{Pa

s,s′} = {p(st+1 = s′|st = s,st = a)},∀s∈ S,∀a ∈
A,∀s′ ∈ S and observation probabilities{Oa

s,z} = {p(zt = z|st = s,at−1 = a)},∀z ∈
Z,∀s∈ S,∀a ∈ A. It also has a discount factorγ ∈ [0;1] and a deterministic reward
functionR : S×A×S×Z→ IR, such thatR(st ,at ,st+1,zt+1) is the immediate reward
for the corresponding transition.

At each time step, the agent is in an unknown statest ∈ S. It executes an action
at ∈ A, arrives in an unknown statest+1 ∈ Sand gets an observationzt+1 ∈ Z. Agents
using POMDP planning algorithms typically keep track of the belief stateb ∈ IR|S|,
which is a probability distribution over all states given the history experienced so far.
A policy is a function that associates an action to each possible belief state. Solving
a POMDP means finding the policy that maximizes the expected discounted return
E(∑T

t=1 γ tR(st ,at ,st+1,zt+1)).
While finding an exact solution to a POMDP is computationally intractable, many

methods exist for finding approximate solutions. In this paper, we use a point-based
algorithm ([9]), in order to compute POMDP solutions. However, the algorithms that
we propose can be used with other approximation methods.

We assume the learner knows the reward function, since it is directly linked to the
task that it wants to execute, and we focus on learning{Pa

s,s′} and{Oa
s,z}. These prob-

ability distributions are typically harder to specify correctly by hand, especially in real
applications. They may also be changing over time. For instance in robotics, the sensor
noise and motion error are often unknown and may also vary with the amount of light,
the wetness of the floor, or other parameters that might not be known in advance. To
learn the transition and observation models, we assume that our agent has the ability
to ask a query that will correctly identify the current state. This is a strong assumption,
but not entirely unrealistic, since first of all we will not need to know the query result
immediately. In fact, in many tasks it is possible (but very costly) to have access to the

full state information; it usually requires asking a human to label the state. As a result,
clearly we want the agent to make as few queries as possible.

3 The MEDUSA+ algorithm

In this section we describe the MEDUSA+ algorithm. Its main idea is to represent the
model uncertainty with a Dirichlet distribution over possible models, and to update
directly the parameters of this distribution as new experience is acquired. It is also built
so that it can cope with non-stationary environments, where the parameters evolve with
time. Furthermore, MEDUSA+ uses queries more efficiently, through the use of the
alternate belief and the non-query learning.

This approach scales nicely: we need one Dirichlet parameter for each uncertain
POMDP parameter, but the size of the underlying POMDP representation remains un-
changed, which means that the complexity of the planning problem does not increase.
However this approach requires the agent to repeatedly sample POMDPs from the
Dirichlet distribution and solve them, before deciding on the next query.

3.1 Dirichlet Distributions

Consider aN-dimensional multinomial distribution with parameters(θ1, . . .θN). A
Dirichlet distribution is a probabilistic distribution over these parameters. The Dirichlet
itself is parameterized by hyper-parameters(α1, . . .αN). The likelihood of the multino-
mial parameters is defined by:

p(θ1 . . .θN|D) =
∏N

i=1 θαi−1
i

Z(D)
, whereZ(D) = ∏N

i=1 Γ(αi)
Γ(∑N

i=1 αi)

The maximum likelihood multinomial parametersθ∗1 . . .θ∗N can be computed, based on
this formula, as:

θ∗i =
αi

∑N
k=1 αk

,∀i = 1, . . .N

The Dirichlet distribution is convenient because its hyper-parameters can be updated
directly from data. For example, if instanceX = i is encountered,αi should be increased
by 1. Also, we can sample from a Dirichlet distribution conveniently using Gamma
distributions.

In the context of POMDPs, model parameters are typically specified according to
multinomial distributions. Therefore, we use a Dirichlet distribution to represent the
uncertainty over these. We use Dirichlet distributions for each state-action pair where
either the transition probabilities or the observation probabilities are uncertain.

Note that instead of using increments of 1 we use a learning rate,λ, which measures
the importance we want to give to one query.

3.2 MEDUSA

The name MEDUSA comes fromMarkovian Exploration with Decision based on the
Use of Sampled models Algorithm. We present here briefly the algorithm as it was de-
scribed in [6].

First, our agent samples a number of POMDP models according to the current
Dirichlet distribution. The agent then computes the optimal policy for each of these
models, and at each time step one of those is chosen with a probability that depends
on the weights these models have in the current Dirichlet distribution. This allows us
to obtain reasonable performance throughout the active learning process: the quality of
the sampled models will be linked to the quality of the actions chosen. This also allows
the agent to focus the active learning in regions of the state space most often visited by
good policies.

Note that with MEDUSA we need not specify a separate Dirichlet parameter for
each unknown POMDP parameter. It is often the case that a small number of hyper-
parameters suffice to characterize the model uncertainty. For example, noise in the sen-
sors may be highly correlated over all states and therefore we could use a single set of
hyper-parameters for all states. In this setup, the corresponding hyper-parameter would
be updated whenever actiona is taken and observationz is received, regardless of the
state.1 This results in a very expressive framework to represent model uncertainty. As
we showed in our previous work, we can vary the number of hyper-parameters to trade-
off the number of queries versus model accuracy and performance.

Each time an action is made and an observation is received, the agent can decide to
query the oracle for the true identity of the hidden state2. If we do query the Dirichlet
distributions are updated accordingly.

In our previous paper we argued and showed experimental evidence that under a
stable model and such a near-optimal policy the queries always bring useful information
up to a point where the model is well-enough learned. In MEDUSA+ we will however
modify this setting so that we know when it is optimal to use the oracle and how we can
extract as much information as possible at each query.

3.3 Non-Query Learning

A major improvement in MEDUSA+ is the use ofnon-query learning, which consists
of (1) deciding when to query and (2) when we don’t query, using the information we
have from the action-observation sequence and knowledge extracted from the previous
queries to update the Dirichlet parameters.

To do an efficient non-query learning we introduce the concept of an alternate belief
β. Actually, for each model we keep track of it in addition to the standard belief. The
alternate belief is updated in the same way as the standard one, with each action and
observation. The only difference is that when a query is done, it is modified so that the

1 As a matter of fact, we have a function that maps any possible transition or observation param-
eters to either a hyper parameter or to acertainparameter.

2 Note that theoretically we need not have the query result immediately after it is asked, since
the result of the processing is not mandatory for the decision making phase. However we will
suppose in the present work that we do have this result immediately.

state is now certain according to it. This allows to keep track of the information still
available from the latest query.

The decision of when to make a query or not can be based on the use of different
indicators:

– PolicyEntropy : the entropy of the resulting MEDUSA policyΨ. It is defined by:

Entropy = −∑|A|a=1 p(Ψ,a) ln(p(Ψ,a)). With experimentation we see that this indicator is
biased. The fact that all models agree does not necessarily means that no query is needed.

– Variance : the variance over the values that each model computes for its optimal action. It
is defined by:Variance = ∑i(Q(mi ,Π(h,mi))− Q̂)2. Experiments show that this indicator
captures efficiently how much learning remains to be done.

– BelVar : the variance on the belief state:BelVar = ∑n
k=1wk ∑i∈S(bk(i)− b̂(i))2, where

∀i, b̂(i) = ∑n
k=1wkbk(i). This heuristic has a good performance but has more noise than Vari-

ance.
– InfoGain : the quantity of information that a query could bring. Its definition is3:

infoGain = ∑n
k=1[wk ∑i, j∈S2[Bt(i, j)(1

∑k′∈Sαt
A,i,k′

+ 1
∑k′∈Z αz

A, j,k′
)]

It has nearly the same behavior as thedistanceheuristic. Its advantage is that it is equal to
zero whenever a query wouldn’t bring any information (in places where the model is already
well known or certain). Since it would be a complete waste of resources to do a query in
these situations, it is very useful.

– AltStateEntropy : this heuristic measures the entropy of the mean alternate belief.
AltStateEntropy = ∑s∈S−[∑N

i=1 βi(s)] log(∑N
i=1 βi(s))

It measures how much knowledge has been lost since the last query, and how inefficient
the non query update would be. Using this heuristic makes the agent able to take as much
information as it can from each single query.

The most useful heuristics are alternate state entropy, information gain, and the variance
on the value function. So the logical function we use in our experimental section is a
combination of these three heuristics.

doQ= (AltStateEntropy> ε1)AND(InfoGain> ε2)AND(Variance> ε3) (1)

The first condition ensures that no query should be done if enough information about
the state is possessed because of previous queries. The second condition ensures that a
query will not be made if it does not bring direct information about the model, which
is the case if we are in a subpart of the model we know very well. The third condition
ensures that we will stop doing queries when our model uncertainty does not have any
influence on the expected return.

To do the non-query update of the transition alpha-parameters, we use thealternate
transition belief Bt(s,s′) which is computed according to Equation 2: it is the distribu-
tion over the transitions that could have occurred in the last time step. Thenon-query
learning then updates the corresponding state transition alpha-parameters according to

3 Bt is defined in Equation 2. Furtheremore, we consider that1∑k′∈Sαt
A,i,k′

= 0 (1
∑k′∈Z αz

A, j,k′
= 0)

when the parameters corresponding to transitions (observations) in state i, action A, arecer-
tain.

Equation 34. On the other hand the observation alpha-parameters are updated propor-
tionally to the new alternate mean belief stateβ̃′ defined by Equation 4 according to
Equation 5.

∀s,s′Bt(s,s′) =
n

∑
i=1

wi

[Oi]zs′,A [Pi]s
′

s,A βi(s)

∑σ∈S[Oi]zσ,A [Pi]σs,A
(2)

∀i ∈ [1. . .n]∀(s,s′)αt(s,A,s′)← αt(s,A,s′)+λBt(s,s′) (3)

∀s β̃′(s) =
n

∑
i=1

wiβ′i(s) (4)

∀i ∈ [1. . .n]∀s′ ∈ Sαz(s′,A,Z)← αz(s′,A,Z)+λβ′i(s
′)wi (5)

3.4 Handling non-stationarity

Since we want our algorithm to be used with non-stationary POMDPs which have pa-
rameters that change over time, our model has to weight recent experience more than
older experience. To do that, each time we update one of the hyper-parameter, we mul-
tiply all the hyper-parameters corresponding to the associated multinomial distribution
by ν ∈]0;1[, which is themodel discount factor.

This does not change the most likely value of any of the updated parameters:

∀i = 1, . . .N,θ∗i,new=
ναi

∑N
k=1 ναk

=
αi

∑N
k=1 αk

= θ∗i,old

However it diminishes the confidence we have in them. Note that theequilibrium
confidencehas the following expression:Cmax= λ 1

1−ν . This confidence is reached after
an infinite number of samples and is an indicator of the trust we have in overall past
experience. Therefore it should be high when we believe the model is stable.

Table 1 provides a detailed description of MEDUSA+, including the implementa-
tion details.

4 Theoretical properties

In this section we study the theoretical properties of MEDUSA+. We will first present
some general definitions and properties and then use them to analyze the limit of the
policy executed and the convergence of MEDUSA+.

4.1 Definitions

We consider a POMDP problem with|S| states,|A| actions and|Z| observations. We call
B = {[0;1]|S|} thebelief space. We callH the history space (which contains all the pos-
sible sequences of actions and observations). LetDt be the set of Dirichlet distributions
at time stept. This set corresponds toNα alpha-parameters:{α1 . . .αNα} parameters.

4 There is an alternative to this procedure. We can also sample a query result from the alter-
nate transition belief distribution and thus update only one parameter. However, experimental
results shows that this alternative is as efficient as the belief-weighted method.

1. Let λ ∈ (0,1) be the learning rate. Initialize the necessary Dirichlet distributions. Note that
we can assume that some parameters are perfectly known. For any unsure transition prob-
ability, Ta

s,·, defineDir ∼ {α1, . . .α|S|}. For any unsure observation parameterOa
s,·, define

Dir ∼ {α1, . . .α|Z|}.
2. Samplen POMDPsP1, . . .Pn from these distributions. (We typically usen = 20). The per-

fectly known parameters are set to their known values.
3. Compute the probability of each model:{p01, . . . p0n}.
4. Solve each modelPi → πi , i = 1, . . .n. We use a finite point-based approximation[9].
5. Initialize the historyh = {}.
6. Initialize the belief for each modelb1 = . . . = bn = b0 (We assume a known initial beliefb0).

We also initialize thealternatebelief β1 = . . . = βn = b0.
7. Repeat:

(a) Compute the optimal actions for each model:a1 = π1(b1), . . .an = πn(bn).
(b) Randomly pick and apply an action to execute, according to the model weights:

ai = πi(bi) is chosen with probabilitywi where∀i wi = pi
pi

. pi is thecurrentprobability
that modeli has according to the Dirichlet distribution. Note that there is a modifica-
tion compared to the original MEDUSA algorithm here. The reason for this particular
modification is to make Proposition 2 verified.

(c) Receive an observationz.
(d) Update the historyh = {h,a,z}
(e) Update the belief state for each model:b′i = ba,z

i , i = 1..n. We also update the alternate
belief β according to the action/observation pair.

(f) Determine if we need a query or not. See Equation 1.
(g) If the query is made, query the current state, which revealssands′. Update the Dirichlet

parameters according to the query outcome:
α(s,a,s′)← α(s,a,s′)+λ
α(s′,a,z)← α(s′,a,z)+λ
Multiply each of theα(s,a,∗) parameters by themodel discount factorν. Set the alter-
nate beliefβ so that the confidence of being in states′ is now 1.

(h) If the query is not made, we use a non query update according to equations 3 and 5.
Note that the alternate beliefs are used in this procedure.

(i) Recompute the POMDP weights:{w′1, . . .w′n}.
(j) At regular intervals, remove the modelPi with the lowest weight and redraw another

modelP′i according to the current Dirichlet distribution. Solve the new model:P′i → π′i
and update its beliefb′i = bh

0, wherebh
0 is the belief obtained when starting inb0 and

seeing historyh. The same is done with the alternate beliefβ: we compute the belief
obtained when we start from the last query and see the history.

(k) At regular intervals, reset the problem, sample a state from the initial belief and set
everyb andβ to b0.

Table 1.The MEDUSA+ algorithm

Proposition 1. Let P be the ensemble containing all the possible POMDP models m
with |S| states,|A| actions and|Z| observations. For any subset P ofP , we can estimate
the probability p(m∈ P|Dt). It is:

p(m∈ P|Dt) =
R

p∈P
∏|S|i=1 θ

α<i,Dt>
−1

i,p
F(Dt)

dp, where F(Dt) = ∏|S|i=1 Γ(α<i,Dt>)

Γ(∑|S|i=1 α<i,Dt>)
.

This actually defines themeasureµ : P⊂ P → [0;1].

Proof. (1)∀P⊂ P µ(P)≥ 0. (2)µ(/0) = 0. (3) LetP1,P2, . . . ,Pn be disjoint subsets ofP :
we haveµ(

S
i Pi) = ∑i µ(Pi). This a straightforward application of the Chasles relation

for converging integrals.

Definition 1. We say that a POMDP isfully-explorable if and only if:

∀s′ ∈ S∀a∈ A∃s∈ S such that p(st = s′|st−1 = s,at−1 = a)≥ 0

This property is verified in most POMDPs of the literature5. Note that we have
to introduce the fact that a given state can be reached at least once by every possible
action only because according to the general definition, the observation probabilities
are a function of the resulting stateandof the chosen action.

Definition 2. LetΠ : H ×P → A be thepolicy function which gives the optimal action
for a given history and a given model. Note that for a given history the policy function
is constant per intervals over the space of models.

Definition 3. A POMDP reward structure iswithout coercionif the reward structure is
such that:∀a∈ A∀h∈H ∃m∈ Ps.t.Π(h,m) = a

This property is verified in most POMDP problems of the literature.

4.2 Analysis of the limit of the policy

In this subsection we analyze how the policy converges when we have an infinite num-
ber of models.

Proposition 2. Given the history h, if we have Nm models m1 . . .mNm and every model
has a weight wi ≥ 0 and the weights are such that∑Nm

i wi = 1, we consider the fol-
lowing stochastic policyΨ in which the probability of doing action a is equal to:
∑Nm

i=1 δ(a,Π(h,mi))wi (whereδ is such thatδ(n,n) = 1, n 6= m⇒ δ(n,m) = 0, andΠ
is the policy function, defined according to Definition 2).

Suppose we have an infinite number of models, which are redrawn at every step.
Then the policyΨ is identical to the policyΨ∞ for which the probability of doing action
a is:

p(Ψ∞,A = a) =
R P

µ δ(a,Π(h,m))dmR
µ being the integral defined by the measure µ that was described in Proposition 1.

Proof sketch. Actually if the conditions are verified, the functions that defineΨ are
rectangular approximations of the integral. According to the Riemann definition of the
integral (as a limit of rectangular approximations or Riemann sums), these approxima-
tions always converge to the value of the integral.

5 The property is true in thetiger POMDP. However it is a very strong condition and we might
want to consider onlysubpartsof a POMDP where this condition is true.

4.3 Convergence of MEDUSA+

In this subsection we do not consider initial priors or any previous knowledge about
the parameters. We study the case in which the model is stationary (andν = 1). The
intuitive idea for this proof is quite straightforward. We will show that convergence is
obtained provided every state-action pair is queried infinitely often. Then we will show
how our algorithm allows this condition to be true.

Theorem 1. If a query is performed at every step, the estimation for the parameters
converges with probability 1 to the true values of the parameters if (1) For a given
state, every action has a non-zero probability of being taken. (2) The POMDP isfully
explorable.

Proof. The estimation we have for each parameter is equal to the maximum likelihood
estimation (MLE) corresponding to the samples seen since the beginning of the algo-
rithm. (∀i ∈ [1. . .N]θ∗i = αi

∑N
k=1 αk

). We know that maximum likelihood estimation always

converges to the real value when there is an infinite number of samples. Furthermore,
conditions 1 and 2 assure that there will be an infinite number of them.

Theorem 2. If the POMDP isfully explorable, if queries are performed at every step,
if the reward structure iswithout coercionand if Ψ∞ is followed, the parameters will
converge with probability 1 to their true values given an infinite run.

Proof. We have to verify the conditions of theorem 1. Condition 2 is verified since we
have the fully-explorable hypothesis. We will prove condition 1. Let us suppose that
the system is in states after having experienced historyh. The no-coercion assumption
implies that for any actiona there exists a modelm such thatΠ(h,m) = a. Since the
policy function is constant per intervals, there exists an intervalP, subpart ofP such
that:∀m ∈ PΠ(h,m) = a and

R P
µ dm> 0.

p(Ψ∞,A = a) =
R P

µ δ(Π(h,m),a)dm

p(Ψ∞,A = a) >
R P

µ δ(Π(h,m),a)dm

p(Ψ∞,A = a) >
R P

µ dm> 0
So the probability of doing actiona is strictly positive, which proves condition 1

and therefore proves the convergence.

According to property 2 and to theorem 2, the MEDUSA+ algorithm converges
with probability 1 given an infinite number of queries, an infinite number of models,
plus queries and redraws at every step. Note that we could also modify MEDUSA+ so
that every action is taken infinitely often6. In that case the no coercion property would
not be required.

Theorem 3. The non-query version of the MEDUSA+ algorithm converges under the
same conditions as above, provided that we useInfoGain > 0, AltStateEntropy
> 0, or an AND of these.

6 This would imply the use of anexploration rate: we would have a probability ofε of doing a
random action, which is a common idea in Reinforcement Learning.

Proof. If InfoGain = 0 doing the query has no effect on the learned model. Further-
more if AltStateEntropy = 0 it means that we can determine with full certainty
what the result of the query would be if we did one: so doing the non-query update has
exactly the same result as doing the query update in both cases. Therefore, using the
non-query learning in MEDUSA+ with these heuristics is equivalent to performing a
query at every step. So Theorem 2 can be applied, which proves the convergence.

5 Experimental results

In this section we present experimental results on the behavior of MEDUSA+. Experi-
ments are made on thetiger problem described in [7]. In this framework there are two
doors and a tiger behind one of them: we have two states stating where the tiger is (tiger-
left and tiger-right) and three actions (hear, open-left, and open-right). The observations
are hear-left and hear-right. Transitions probabilities are set such that the tiger is with
equal chances behind each door and does not move when the hear action is performed.
The hear action brings the correct information with probabilityp and the rewards are
set such that opening the door with the tiger is heavily penalized, and opening the other
one has a high value.

We study the behavior of MEDUSA+ in cases where we have learned a model with
high confidence and we experience a sudden change in the parameterp: in this way we
see how MEDUSA+ can adapt to a change in the environment.

On Figure 1, we see the behavior of the algorithm when the equilibrium confidence
is low (equal to 100): the agent quickly adapts to the changed parameter value even
if the variation is big. However the low confidence introduces some oscillations in the
parameter values and therefore in the policy. In figure 2, we see what happens when the

Fig. 1. Evolution of the discounted reward. There is a sudden change in the parameterp at time
0. Here, the equilibrium confidence is low (100).

Fig. 2. Evolution of the discounted reward. There is a sudden change in the parameterp at time
0. Here, the equilibrium confidence is high (1000).

equilibrium confidence is high (equal to 1000): the agent takes more time to adapt to
the new parameter value but the oscillations are less important.

These results show that we can actually tune the confidence factors to make them
adapted either to almost constant parameters or to quickly changing parameters. Note
that on most of these experiments we need a number of queries which is between 300
and 500. The non-query learning introduced in this paper reduces the number of queries
by a factor of 3. The queries would not be needed if the changes in the parameters were
small enough.

6 Discussion

Chrisman [3] was among the first to propose a method for acquiring a POMDP model
from data. Shatkay & Kaelbling [11] used a version of the Baum-Welch algorithm
to learn POMDP models for robot navigation. Bayesian exploration was proposed by
Dearden et al. [5] to learn the parameters of an MDP. Their idea was to reason about
model uncertainty using Dirichlet distributions over uncertain model parameters. The
algorithm we present in Section 3 can be viewed as an extension of this work to the
POMDP framework, though it is different in many respects, including how we trade-off
exploration vs exploitation, and how we take non-stationarity into account.

We also point out that our work bears resemblance to some of the recent approaches
for handling model-free POMDPs [8];[2];[12]. Whereas these approaches are well
suited to domains where there is no good state representation, our work does make
strong assumptions about the existence of an underlying state. This assumption allows
us to partly specify a model whenever possible, thereby making the learning problem
much more tractable (e.g., at most 1000 times fewer examples are needed.).

The other key assumption we make, which is not used in model-free approaches,
regards the existence of an oracle (or human) for correctly identifying the state follow-

ing each query. This is a strong assumption; however, we precise that the query result
needs not be known immediately so this hypothesis is realistic: (in the tiger problem,
for example, it is logical to suppose that we can tell the agent if the door it has opened
had indeed the tiger behind it after the opening action is done).

Our active learning strategy handles cases where we don’t know the full domain
dynamics and cases where the model changes over time. Those were cases that no other
work in the POMDP literature had handled.

We have explained the MEDUSA+ algorithm and the improvements we made from
MEDUSA. We have discussed the theoretical properties of MEDUSA+ and presented
the conditions needed for its convergence. Furthermore, we have shown empirical re-
sults showing that MEDUSA+ can cope with non stationary POMDPs with a reasonable
amount of experimentation.

References

[1] Anderson, B. and Moore, A. “Active Learning in HMMs” 2005.
[2] Brafman, R. I. and Shani, G. “Resolving perceptual aliasing with noisy sensors” NIPS, 2005.
[3] Chrisman, L. “Reinforcement learning with perceptual aliasing: The perceptual distinctions

approach” Proceedings of the Tenth International Conference on Artificial Intelligence, pages
183–188, AAAI Press, 1992.

[4] Cohn, D. A., Ghahramani, Z. and Jordan, M. I. “Active Learning with Statistical Models”
NIPPS, 1996.

[5] Dearden, R.,Friedman, N.,Andre, N., “Model Based Bayesian Exploration” Proc. Fifteenth
Conf. on Uncertainty in Artificial Intelligence, 1999.

[6] Jaulmes, R.,Pineau, J.,Precup, D., “Active Learning in Partially Observable Markov Decision
Processes” ECML, 2005.

[7] Kaelbling, L., Littman, M. and Cassandra, A. “Planning and Acting in Partially Observable
Stochastic Domains” Artificial Intelligence. vol.101, 1998.

[8] McCallum, A. K. “Reinforcement Learning with Selective Perception and Hidden State”
Ph.D. Thesis. University of Rochester, 1996.

[9] Pineau, J., Gordon, G. and Thrun, S. “Point-based value iteration: An anytime algorithm for
POMDPs” IJCAI, 2003.

[10] Poupart, P. and Boutilier, C. “VDCBPI: an Approximate Scalable Algorithm for Large Scale
POMDPs” NIPS, 2005.

[11] Shatkay, H., Kaelbling, L. “Learning topological maps with weak local odometric informa-
tion” Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence (pp.
920–927). Morgan Kaufmann, 1997.

[12] Singh, S., Littman, M., Jong, N. K., Pardoe, D., and Stone, P. “Learning Predictive State
Representations” ICML, 2003.

[13] Spaan, M. T. J. Spaan, and Vlassis, N. “Perseus: randomized point-based value iteration for
POMDPs”. Journal of Artificial Intelligence Research, 2005. To appear.

