
Towards a Continuous Reinforement LearningModule for Navigation in Video GamesThierry Gourdin and Olivier SigaudLIP6/AnimatLab8 rue du Capitaine Sott75015 PARISThierry.Gourdin�lip6.fr, Olivier.Sigaud�lip6.frAbstrat. Video games are highly non-stationary environments. Ourgoal is to build a navigation module for video games based on Continu-ous Reinforement Learning tehniques. A study of the state-of-the-art ofthese tehniques reveals that memory-based approahes are partiularlysuitable for our appliation ontext. More preisely, among memory-based reinforement learning tehniques, we ompare a ase-based ap-proah, proposed by Santamaria, Sutton and Ram to an instane-basedapproah, proposed by Smart and Kaelbling. We show on the standardversion of Mountain-Car benhmark problem that our modi�ed versionof the former onverges faster than the latter. Then we show that ouralgorithm an deal with di�erent non-stationary extensions of the sameproblem, whih is a �rst step towards the appliation to video games.1 IntrodutionThe video games industry is growing fast. The growth of omputational powerof personal omputers has �rst been translated into improved visual rendering,resulting in a more realisti immersion of the players into the simulated worldsthey play with. Nowadays, more and more game development ompanies arelooking for more realisti behaviors for the Non Player Charaters (NPCs, orbots) involved in the games. This results in a surge of interest for Arti�ial In-telligene (AI) tehniques, as exempli�ed in several reent game development re-lated onferenes (GameOn, Game Developers Conferene, SIGGRAPH, AAAIand IJCAI workshops).From the perspetive of AI laboratories, the video games industry o�ersan attrative appliation domain: the realisti nature of their simulated worldsmakes them as interesting as roboti appliations, but at a muh lower ost,both �nanially and in terms of experimental e�ort sine the experiments anbe run for weeks without the di�ulties inherent to robotis.In partiular, from a Reinforement Learning (RL) perspetive, these appli-ations are onvenient sine it is often easier to de�ne punishments and rewardsin the ontext of a game than to design a suitable behavior for any situation. Butvideo games are also a hallenging domain beause they are generally multiagent(with human players involved), thus highly non-stationary and unpreditable,



2they are generally ontinuous in nature even if they an be disretized and thepereption of NPCs is limited, resulting in partial observability problems.Reently, Robert [1℄ has designed a dediated Learning Classi�er Systems(LCSs) arhiteture ombined with a multiobjetive ation seletion mehanismin order to ontrol a team of soldiers in Team Fortress Classi (Valve R©). Thanksto RL mehanisms, his agents were able to defeat a medium level team of hand-oded bots alled HBPBot and to rival the muh more aurate team alledFoxBot. One of the reasons of the suess of Robert's work is that it relies on aarefully hosen set of high level disrete pereptions and ations. In partiular,as far as navigation is onerned, his bots an only hoose among a very limitedset of destinations and then the lassial A∗ algorithm [2℄ is used to de�ne thepath from the urrent loation of the bot to its destination.Instead of the navigation mehanism used by Robert, our long term goal isto use a ontinuous state and ation spaes RL mehanism able to optimize themovement of the bot at any moment given its urrent ontext and objetives.This paper presents a preliminary work dediated to the identi�ation of themost suitable tehnique in this hallenging non-stationary appliation ontext.More preisely, in the next setion, we present a state-of-the-art of RL teh-niques dediated to ontinuous state and ation spaes, and explain why the soalled �memory-based� approahes appear the best hoie. There are two lassesof �memory-based� algorithms, alled �ase-based� and �instane-based�. In se-tion 3, we present our own model whih derives from a ase-based algorithmpublished by Santamaria, Sutton et Ram [3℄. In setion 4, we use the well-knownMountain-Car benhmark problem to experimentally ompare our algorithm tothe instane-based algorithm alled Hedger from Smart and Kaelbling [4℄. Wealso examine the behavior of our algorithm in the ontext of a non-stationaryversion of the Mountain-Car problem and disuss the fat that the faster onver-gene of our algorithm makes it more suitable for the ontext of non-stationaryenvironments that we will fae in video games. In setion 5, we onlude to thee�ieny of our approah and disuss the extensions that will be neessary tofae the more hallenging ontext of ommerial video games.2 Continuous State and Ation RL2.1 BakgroundThe Markov Deision Proesses (MDPs) framework [5℄ is probably the bestunderstood and most suitable mathematial framework when one wants to modelthe sequential interation of an agent with its environment, partiularly whenthis interation is unertain or stohasti. The framework de�nes:� a �nite set S of states s and a �nite set A of ations a,� a transition funtion T : S × A → Π(S) whih maps (st, at) ouples toprobability distributions over the next state st+1 if at is performed in thestate st. Given the probabilisti nature of transitions, T (st, at)(st+1) is alsowritten Pr(st+1|st, at),



3� a salar reward funtion R : S × A → IR whih de�nes the immediatereinforement signal that the agent will get if it makes ation a in state s.The Markov property is veri�ed when the probability distribution over the nextstate an be exatly omputed knowing only the urrent state and the ationseleted by the agent :
Pr(st+1|st, at, st−1, at−1, ..., s0, a0) = Pr(st+1|st, at)Mapping an ation to eah state de�nes a poliy π. The framework was�rst used to de�ne and solve the so alled �planning problem�, i.e. �nd thepoliy an agent should follow in order to maximize its return, expressed as somefuntion of the rewards reeived at eah time step from the environment [6℄. Themost ommon return funtion is the disounted return: Eπ(s0) =

∑
∞

t=0 γtRt,where the disount fator γ re�ets the relative importane of short or longterm rewards and Rt is the reward reeived at time t.These methods onsist in introduing a value funtion V π where V π(s) rep-resents the expeted return of an agent if it follows poliy π from state s. It isshown that, when the Markov hypothesis holds, this funtion is solution of theBellman equation [5℄:
∀s ∈ S, V π(s) =

∑

a

π(st, at)[R(st, at) + γ
∑

st+1

Pr(st+1|st, at)V
π(st+1)] (1)From equation 1, the optimal value funtion V ∗ an be reahed using Dy-nami Programming (DP) methods suh as Poliy Iteration [7, 8℄ and ValueIteration [6℄. Instead of the value funtion V , it is often more onvenient to in-trodue a funtion Q where Q(s, a) evaluates the quality of doing ation a instate s. Everything that has been said about the funtion V an be transposedto the funtion Q, given that V (s) = maxa Q(s, a).The problem with DP methods is that they require a perfet knowledge ofthe transition and reward funtions. Suh a requirement annot be generallysatis�ed in omplex and unpreditable environments suh as video games. Butthe same framework an also be used in order to de�ne and solve the so alled�learning problem�, i.e. reah the optimal poliy when the transitions betweenstates and the soures of reward are not known in advane [9℄.The ounterpart of DP methods in the ontext of learning problems are alledTemporal Di�erene (TD) methods. The �rst TD methods whose onvergeneto optimality was proved are TD, Sarsa and Q-learning [10�12℄.TD(0) The basi TD algorithm, alled TD(0) [13℄, is based on a omparisonbetween the reward atually reeived and the expeted reward given the previousestimates. More preisely, the temporal di�erene error δ = Rt+1 + γV (st+1)−

V (st) [13℄ orresponds to the error between the atual values of estimates of
V (st) and the values they should have. The TD method, whose onvergene is



4proved in [14℄, onsists in orreting V (st) little by little thanks to a Widrow-Ho�equation using a learning rate α:
V (st)← V (st) + α[Rt+1 + γV (st+1)− V (st)] (2)However, in a RL ontext, if the agent does not know the transition funtion,it annot derive e�iently a poliy from the value funtion: it does not knowwhih ation it should exeute to reah the next state with the highest value.This explains why TD(0) is not used in pratie when the model of transitionsis unknown. Rather than estimating the value funtion V , most RL algorithmsrely on the estimation of the Q-funtion.Sarsa The Sarsa algorithm is the ounterpart of the TD algorithm when oneuses the Q-funtion rather than the value funtion. Its update rule is:

Q(st, at)← Q(st, at) + α[Rt+1 + γQ(st+1, at+1)−Q(st, at)] (3)The name Sarsa omes from the neessary information for suh an update, thequintuplet (st, at, Rt+1, st+1, at+1). Thus, in order to ompute this update, theagent must know in advane its next state st+1 and the ation at+1 it is goingto take in that state. Suh a method is said �On-Poliy� sine it implies a strongdependeny between the poliy of the agent and its ability to update its modelof the Q-funtion.Q-learning Q-learning is simpler than Sarsa. Its update rule is:
Q(st, at)← Q(st, at) + α[Rt+1 + γ max

a
Q(st+1, a)−Q(st, at)] (4)The term Q(st+1, at+1) in equation 3 has been replaed by maxaQ(st+1, a)in equation 4. This time, the update rule is independent of what the agent willdo next, thus the algorithm is said �O�-poliy�. This brings several pratial ad-vantages (in partiular, the learning proess is more independent of the deisionproess and seems more robust, see [15, 16℄ for a disussion) but also results ina simpler proof of onvergene [11℄. Note that both equations would be identialif the agent was following a greedy poliy, but it is not the ase in general sinean agent must explore its environment in order to learn.Disussion From the bakground setion above, we an already draw two on-lusions on the most suitable methods for our appliation problem:� DP methods annot be used as suh in the ontext of video games, beausethe dynamis of the interation between agents and their environment istoo omplex and unpreditable to be modeled by hand. There also existsmodel-based RL methods suh as Dyna methods [17℄ that learn the modelof the environment before applying DP methods, but annot be applied herebeause learning a non-stationary model of transition and rewards is toodi�ult so far. Thus we have to rely on plain TD methods;



5� among TD methods, we prefer the O�-poliy methods suh as Q-learning toOn-poliy methods suh as Sarsa for the robustness reasons mentioned justabove.Thus, in the next setion, we will fous on Model-Free methods based on aO�-Poliy algorithm suh as Q-learning.2.2 Continuous Q-learning: a restrited state-of-the-artIn the previous setion, we have examined RL methods in disrete state andation spaes. When states and ations beome ontinuous, the standard adap-tation of the RL methods onsists in hoosing a lass of approximation funtionsto represent the ontinuous value funtion and in tuning their parameters so asto math the values known from single experienes. Tuning the parameters anbe done using a Widrow-Ho� update rule on the gradient of the Q-funtion 1:
∀i ∈ [0, N ], ∆ωi = αδQL

∂Q(st, at)

∂ωiBut Baird has shown that these methods, though they are fast, may notonverge [18℄. Instead, he shows the onvergene of residual gradient methodsbased on the gradient of the TD error. We set b = arg maxa′Q(st+1, a
′) and wehave:

∀i ∈ [0, N ], ∆ωi = −αδQL[
∂δQL

∂ωi

] = αδQL[
∂Q(st, at)

∂ωi

− γ
∂Q(st+1, b)

∂ωi

]One the tuning method is hosen, we an examine the lasses of approxi-mation funtions that have been proposed to apply O�-poliy RL algorithms toontinuous state and ation spaes. We will do so thanks to the following list ofrelevant properties inspired from [16℄, but adapted to our partiular ontext.Generalization ability Generalization omes from the ability of approxima-tion funtions to give a orret value in states that the agent never experi-ened before.Model-independene Tomath our appliation requirement, the method mustnot assume the availability of the transition and reward funtions in any way.Fast retrieval of the best ation (FRBA) Given that the state and ationare ontinuous, �nding the best ation for a partiular state given the dif-ferent approximation funtion may be omputationally expensive if the datastrutures are heavy. This may be inompatible with the real-time require-ment of video games.Continuity Sine our appliation is navigation, we want our system to givevery similar ations as output from very similar states.1 We note δQL the temporal di�erene error omputed by Q-learning



6Loality If the system learns something around a partiular state, we do notwant the modi�ation to impair something learned elsewhere in the statespae.Readability The more readable the output of the learning proess is, the easierit is to debug and reuse the knowledge expressed.All systems studied in our state-of-the-art rely on an approximation of theQ-funtion, thus they all bene�t from a generalization ability. Furthermore, werestrit the study to Model-independent systems.CMAC Introdued by [19℄, the Cerebellar Model Artiulation Controller (CMAC)disretizes a ontinuous state and ation spae into N overlapping partitions.Eah element of eah partition approximates the Q-funtion. The global valueof a given state is the sum of the values given by all partitions. Being one of theearliest systems, CMAC is a referene in the domain, but most reent systemshave a better performane and more interesting properties [3℄.Learning Classi�er Systems LCSs are rule-based systems ombining RLalgorithms with Geneti Algorithms. XCS, the most studied LCS so far, hasreently been extended to deal with ontinuous states [20℄ and ations [21℄. Themain advantages of LCSs are their readability and the fat that learning is loal.But they are very ine�ient at retrieving the best ation and the ontinuityproperty is not guaranteed sine two di�erent rules with similar onditions antrigger very di�erent ations.Disrete ations Neural Q-learning One way to deal with ontinuous statesand ations onsists in using a Neural Network (NN) with one input unit perpereption and one output unit per ation. The triggered ation at eah timestep is the one whose orresponding output unit is the most ativated. Some ofthese systems have been trained with Q-learning [22, 23℄. The problem is thatthe more ations are needed, the bigger the network must be. Moreover, likemost NN systems, this approah fails on the loality and readability properties,partiularly in the ase of multi-layer pereptrons. The ase of RBF networks ispartiular and, in fat, muh loser to our model presented in setion 3, but wewill not expand on that topi here.Continuous ations Neural Q-learning Among NN approahes ombiningQ-learning with ontinuous states and ations, Dynami Neural Fields [24℄ andQ-Kohon, a kind of Self Organizing Map, [25℄ do not math our needs beausethey are slow to reah a steady state, hene to provide the best ation.The Wire Fitting Neural Network tehnique [16℄ is of muh more interest tous. It ombines a single layer pereptron approximating the Q-funtion in anystate with a Wire Fitting interpolator [26℄ dediated to the fast retrieval of thebest ation. This system mathes almost all our needs but fails on loality andreadability, as all NN systems do.



7Lazy Learning Lazy Learning methods are also alled memory-based methodsbeause they try to approximate the value funtion or the Q-funtion thanks toa rather simple storage of previous experienes of the agent, alled �ases�.Previous ases below a given distane τs to the urrent state of the agent are�ativated�, thus used to interpolate the Q-funtion at that state, using a LoallyWeighted Average (LWA) or a Loally Weighted Regression (LWR) [27℄.A new ase is stored eah time there is no ase to be ativated below adistane ∆s. Thus, ∆s ontrols the density of ases (see �gure 1).There are two main instanes of Lazy Learning methods. The instane-basedlearning algorithm Hedger [4℄ works diretly in a joint state and ation spaeand stores simple (si, ai, qi) triples in eah ase.The ase-based learning algorithm from [3℄ is more omplex. First, it is basedon a Sarsa algorithm with eligibility traes (noted ei hereafter) rather than on Q-learning. Seond, the struture of eah aseCi is noted (si, Qi, ei, (aj , qij , eij)j=1...N ),where the vetor (aj)j=1...N disretizes the ation spae. Third, instead of work-ing in a joint S ×A spae, it �rst applies a distane funtion ds between statesand then a distane funtion da between ation to determine the in�uene of eahprevious ase in the interpolation. Fourth, the update rule ombines an updateof the average Q-value over all ations (with a oe�ient ρ) and an update ofthe Q-values qi of the individual ations ai (with a oe�ient (1-ρ)) as follows:
Q(st, at) =

∑

Ci∈NNt

Ks(ds
it)∑

m Ks(ds
mt)

[ρ
∑

aj∈Ci

Ka(da
jt)∑

m Ka(da
mt)

qij + (1− ρ)Qi] (5)where Ks and Ka are kernel funtions determining the in�uene of eahprevious experiene depending on the distanes, ds
it is the distane between thestates st and si and da

jt is the distane between ations aj and at (see �gure 1).Both Lazy Learning approahes are loal and ontinuous. But they do notprovide a fast retrieval of the best ation and their output is not easily readable.2.3 Disussionproperty FRBA Continuity Loality ReadabilityCMAC XLearning Classi�er Systems X XDisrete ations Neural Q-learning XContinuous ations Neural Q-learning X XLazy learning X XTable 1. Synthesis of our state-of-the-artFrom table 1, one an see that several hoies are possible. But in [28℄, Bairdlaimed that the Wire Fitting tehniques used by [16℄ ould also be used in the



8ontext of Lazy Learning methods, whih makes this ategory more attrativethan the others. In the next setion, we present our adaptation of the ase-basedalgorithm from [3℄ to our ontext.3 Our model
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a shown on the left-hand side part of the �gure.Updates are applied to all ative ases. For more details, see [3℄.Our model is similar to the one from [3℄, but di�ers on several respets:� Rather than a Sarsa algorithm with eligibility traes, we use a residual gra-dient version of Q-learning;� We set ρ = 1 in equation 5; as a result, the Qi terms disappear of equation 5 ;� The initialization of Q-values is not learly spei�ed in [3℄, thus we initializethe new ase Cnew as (snew , (aj , qnewj)j=1...N ), where snew = st is the newstate, and for eah ation aj , we set qnewj = Rnew
Ka(da

jt)∑
m

Ka(da
mt

)� Rather than a plain Eulidean distane, we use a weighted distane whihtakes into aount the range of values of all dimensions in order to normalizetheir relative in�uene.As a onsequene of the �rst modi�ations, the struture of ases is muhsimpli�ed, oming down to (si, (aj , qij)j=1...N ). In experiments not desribedhere, we heked that all the simpli�ations above had no negative impat onthe performane with respet to the system desribed by [3℄.



94 Experimental study4.1 The Mountain-Car problemThe Mountain-Car problem is a lassial benhmark for ontinuous state RLalgorithms where a ar must reah the top of a hill at the lowest possible speed.We follow the spei�ation of [4℄. The authors indiate that, with a �ne-graineddisretized tabular Q-learning, the average number of steps to the goal onvergesslowly to 56 steps from 2500 initial positions (see �gure 2).4.2 Experimental results and Disussion
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Fig. 2. Comparison of the average number of steps neessary to reah the target posi-tion from 2500 initial positions, with tabular Q-learning (top), our ase-based approah(bottom) and that of instane-based Hedger (the latter reprodued from [4℄). Resultsare obtained from a greedy poliy. Between eah performane measurement, a learningepisode onsists in initializing the ar randomly and allowing a maximum duration of200 time steps. Results are shown in steps rather than episodes here to give a moredetailed view.Figure 2 shows that, without any spei� optimization, our approah on-verges muh faster and towards a better performane than Hedger.In [4℄, the authors propose a series of optimizations that signi�antly improvethe performane of Hedger at suh a point that their system �nally performsbetter than ours. In partiular, they use a form of prioritized sweeping whihaelerates the learning proess, but at the double ost of having to wait for theend of an episode and storing all data during an episode. In video games, anepisode is virtually in�nite, thus this method annot be applied as suh.Thus our laim is that our approah is more suited to real-time and highlynon-stationary environments suh as video game than Hedger, both beause



10our ase-based approah implies muh less memory requirements and beausein suh ontexts it is more important to onverge fast towards a reasonablye�ient poliy rather than onverging more slowly to a poliy that would havebeen better if the environment had not hanged in between.In order to further validate this laim, we hek with additional experimentsthat our algorithm is able to deal e�iently with two simple forms of non-stationarities.The �rst one is a sudden hange in the dynamis of the environment, suhthat the value funtion must be ompletely learned again. In order to test thissituation, we reverse the engine of the ar eah 5000 episodes, so that break-ing beomes aelerating and vie versa. The seond one is a slow drift of thedynamis of the environment. Here, the learner must responsively adapt its esti-mation of the value funtion while this funtion is hanging. In order to test thissituation, we let the amplitude of the aeleration of the ar At evolve aordingto the equation At = A0(1 + 0, 5sin(2πt
T

)) where A0 is the standard amplitudeand T orresponds to approximately 6000 learning episodes. Results are shownon �gures 3(a) and 3(b).
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11� are all the forms of non-stationarities that we will meet in video gamesapproximated well enough with both forms studied here?� will these non-stationarities be �nie� enough so that the loss of performaneof the agent that they imply will stay aeptable in terms of observed be-havior?It is lear that some forms of non-stationarities due to the presene of otheragents or to hanges in the reward funtion have not been tested in this paper.But we hope that the ability to onverge fast is a general answer to all thesedi�erent questions, that would require di�erent treatments if they were to bedealt with expliitly. This remains to be heked empirially.5 Conlusion and Future workIn the ase of a highly non-stationary and ontinuous environment suh as avideo game, rather than trying to deal expliitly with the non-stationarity withad ho methods, our approah in this paper has been to look for an algorithmthat onverges fast enough towards a orret poliy so that the behavior an beadapted at any moment to the varying ontexts.Our experiments have highlighted the plausibility of this approah in theontext of a well-known benhmark problem. The next thing to do now is to testour approah in the ontext of a video games to hek if our basi assumptionsare veri�ed when onfronted to the real di�ulty.In partiular, we must hek that, in the ontext of the Mountain-Car prob-lem, there were only three disrete ations. We will have to hek how our modelbehaves in the ontext of ontinuous ations implied by navigation problems.On a longer term, the result of this researh will have to be integrated with theprevious work of Robert [1℄ so as to ombine the strengths of both ontributions.Referenes1. Robert, G.: MHiCS, une arhiteture de séletion de l'ation Motivationnelle etHiérarhique à Systèmes de Classeurs pour Personnages Non Joueurs adaptatifs.PhD thesis, Laboratoire d'Informatique de Paris 6 (2005)2. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristi determina-tion of minimal ost paths. IEEE transations on SSC 4 (1968) 100�1073. Santamaria, J.C., Sutton, R., Ram, A.: Experiments with reinforement learningin problems with ontinuous state and ation spaes. Adaptive Behavior 6 (1997)163�2184. Smart, W.D., Kaelbling, L.P.: Pratial reinforement learning in ontinuousspaes. In: 17th International Conferene on Mahine Learning. (2000) 903�9105. Bertsekas, D.P.: Dynami Programming and Optimal Control. Athena Sienti�,Belmont, MA (1995)6. Bellman, R.E.: Dynami Programming. Prineton University Press, Prineton, NJ(1957)7. Bellman, R.E.: Adaptive Control Proesses: A Guided Tour. Prineton UniversityPress (1961)
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