
Towards a Continuous Reinfor
ement LearningModule for Navigation in Video GamesThierry Gourdin and Olivier SigaudLIP6/AnimatLab8 rue du Capitaine S
ott75015 PARISThierry.Gourdin�lip6.fr, Olivier.Sigaud�lip6.frAbstra
t. Video games are highly non-stationary environments. Ourgoal is to build a navigation module for video games based on Continu-ous Reinfor
ement Learning te
hniques. A study of the state-of-the-art ofthese te
hniques reveals that memory-based approa
hes are parti
ularlysuitable for our appli
ation
ontext. More pre
isely, among memory-based reinfor
ement learning te
hniques, we
ompare a
ase-based ap-proa
h, proposed by Santamaria, Sutton and Ram to an instan
e-basedapproa
h, proposed by Smart and Kaelbling. We show on the standardversion of Mountain-Car ben
hmark problem that our modi�ed versionof the former
onverges faster than the latter. Then we show that ouralgorithm
an deal with di�erent non-stationary extensions of the sameproblem, whi
h is a �rst step towards the appli
ation to video games.1 Introdu
tionThe video games industry is growing fast. The growth of
omputational powerof personal
omputers has �rst been translated into improved visual rendering,resulting in a more realisti
 immersion of the players into the simulated worldsthey play with. Nowadays, more and more game development
ompanies arelooking for more realisti
 behaviors for the Non Player Chara
ters (NPCs, orbots) involved in the games. This results in a surge of interest for Arti�
ial In-telligen
e (AI) te
hniques, as exempli�ed in several re
ent game development re-lated
onferen
es (GameOn, Game Developers Conferen
e, SIGGRAPH, AAAIand IJCAI workshops).From the perspe
tive of AI laboratories, the video games industry o�ersan attra
tive appli
ation domain: the realisti
 nature of their simulated worldsmakes them as interesting as roboti
 appli
ations, but at a mu
h lower
ost,both �nan
ially and in terms of experimental e�ort sin
e the experiments
anbe run for weeks without the di�
ulties inherent to roboti
s.In parti
ular, from a Reinfor
ement Learning (RL) perspe
tive, these appli-
ations are
onvenient sin
e it is often easier to de�ne punishments and rewardsin the
ontext of a game than to design a suitable behavior for any situation. Butvideo games are also a
hallenging domain be
ause they are generally multiagent(with human players involved), thus highly non-stationary and unpredi
table,

2they are generally
ontinuous in nature even if they
an be dis
retized and theper
eption of NPCs is limited, resulting in partial observability problems.Re
ently, Robert [1℄ has designed a dedi
ated Learning Classi�er Systems(LCSs) ar
hite
ture
ombined with a multiobje
tive a
tion sele
tion me
hanismin order to
ontrol a team of soldiers in Team Fortress Classi
 (Valve R©). Thanksto RL me
hanisms, his agents were able to defeat a medium level team of hand-
oded bots
alled HBPBot and to rival the mu
h more a

urate team
alledFoxBot. One of the reasons of the su

ess of Robert's work is that it relies on a
arefully
hosen set of high level dis
rete per
eptions and a
tions. In parti
ular,as far as navigation is
on
erned, his bots
an only
hoose among a very limitedset of destinations and then the
lassi
al A∗ algorithm [2℄ is used to de�ne thepath from the
urrent lo
ation of the bot to its destination.Instead of the navigation me
hanism used by Robert, our long term goal isto use a
ontinuous state and a
tion spa
es RL me
hanism able to optimize themovement of the bot at any moment given its
urrent
ontext and obje
tives.This paper presents a preliminary work dedi
ated to the identi�
ation of themost suitable te
hnique in this
hallenging non-stationary appli
ation
ontext.More pre
isely, in the next se
tion, we present a state-of-the-art of RL te
h-niques dedi
ated to
ontinuous state and a
tion spa
es, and explain why the so
alled �memory-based� approa
hes appear the best
hoi
e. There are two
lassesof �memory-based� algorithms,
alled �
ase-based� and �instan
e-based�. In se
-tion 3, we present our own model whi
h derives from a
ase-based algorithmpublished by Santamaria, Sutton et Ram [3℄. In se
tion 4, we use the well-knownMountain-Car ben
hmark problem to experimentally
ompare our algorithm tothe instan
e-based algorithm
alled Hedger from Smart and Kaelbling [4℄. Wealso examine the behavior of our algorithm in the
ontext of a non-stationaryversion of the Mountain-Car problem and dis
uss the fa
t that the faster
onver-gen
e of our algorithm makes it more suitable for the
ontext of non-stationaryenvironments that we will fa
e in video games. In se
tion 5, we
on
lude to thee�
ien
y of our approa
h and dis
uss the extensions that will be ne
essary tofa
e the more
hallenging
ontext of
ommer
ial video games.2 Continuous State and A
tion RL2.1 Ba
kgroundThe Markov De
ision Pro
esses (MDPs) framework [5℄ is probably the bestunderstood and most suitable mathemati
al framework when one wants to modelthe sequential intera
tion of an agent with its environment, parti
ularly whenthis intera
tion is un
ertain or sto
hasti
. The framework de�nes:� a �nite set S of states s and a �nite set A of a
tions a,� a transition fun
tion T : S × A → Π(S) whi
h maps (st, at)
ouples toprobability distributions over the next state st+1 if at is performed in thestate st. Given the probabilisti
 nature of transitions, T (st, at)(st+1) is alsowritten Pr(st+1|st, at),

3� a s
alar reward fun
tion R : S × A → IR whi
h de�nes the immediatereinfor
ement signal that the agent will get if it makes a
tion a in state s.The Markov property is veri�ed when the probability distribution over the nextstate
an be exa
tly
omputed knowing only the
urrent state and the a
tionsele
ted by the agent :
Pr(st+1|st, at, st−1, at−1, ..., s0, a0) = Pr(st+1|st, at)Mapping an a
tion to ea
h state de�nes a poli
y π. The framework was�rst used to de�ne and solve the so
alled �planning problem�, i.e. �nd thepoli
y an agent should follow in order to maximize its return, expressed as somefun
tion of the rewards re
eived at ea
h time step from the environment [6℄. Themost
ommon return fun
tion is the dis
ounted return: Eπ(s0) =

∑
∞

t=0 γtRt,where the dis
ount fa
tor γ re�e
ts the relative importan
e of short or longterm rewards and Rt is the reward re
eived at time t.These methods
onsist in introdu
ing a value fun
tion V π where V π(s) rep-resents the expe
ted return of an agent if it follows poli
y π from state s. It isshown that, when the Markov hypothesis holds, this fun
tion is solution of theBellman equation [5℄:
∀s ∈ S, V π(s) =

∑

a

π(st, at)[R(st, at) + γ
∑

st+1

Pr(st+1|st, at)V
π(st+1)] (1)From equation 1, the optimal value fun
tion V ∗
an be rea
hed using Dy-nami
 Programming (DP) methods su
h as Poli
y Iteration [7, 8℄ and ValueIteration [6℄. Instead of the value fun
tion V , it is often more
onvenient to in-trodu
e a fun
tion Q where Q(s, a) evaluates the quality of doing a
tion a instate s. Everything that has been said about the fun
tion V
an be transposedto the fun
tion Q, given that V (s) = maxa Q(s, a).The problem with DP methods is that they require a perfe
t knowledge ofthe transition and reward fun
tions. Su
h a requirement
annot be generallysatis�ed in
omplex and unpredi
table environments su
h as video games. Butthe same framework
an also be used in order to de�ne and solve the so
alled�learning problem�, i.e. rea
h the optimal poli
y when the transitions betweenstates and the sour
es of reward are not known in advan
e [9℄.The
ounterpart of DP methods in the
ontext of learning problems are
alledTemporal Di�eren
e (TD) methods. The �rst TD methods whose
onvergen
eto optimality was proved are TD, Sarsa and Q-learning [10�12℄.TD(0) The basi
 TD algorithm,
alled TD(0) [13℄, is based on a
omparisonbetween the reward a
tually re
eived and the expe
ted reward given the previousestimates. More pre
isely, the temporal di�eren
e error δ = Rt+1 + γV (st+1)−

V (st) [13℄
orresponds to the error between the a
tual values of estimates of
V (st) and the values they should have. The TD method, whose
onvergen
e is

4proved in [14℄,
onsists in
orre
ting V (st) little by little thanks to a Widrow-Ho�equation using a learning rate α:
V (st)← V (st) + α[Rt+1 + γV (st+1)− V (st)] (2)However, in a RL
ontext, if the agent does not know the transition fun
tion,it
annot derive e�
iently a poli
y from the value fun
tion: it does not knowwhi
h a
tion it should exe
ute to rea
h the next state with the highest value.This explains why TD(0) is not used in pra
ti
e when the model of transitionsis unknown. Rather than estimating the value fun
tion V , most RL algorithmsrely on the estimation of the Q-fun
tion.Sarsa The Sarsa algorithm is the
ounterpart of the TD algorithm when oneuses the Q-fun
tion rather than the value fun
tion. Its update rule is:

Q(st, at)← Q(st, at) + α[Rt+1 + γQ(st+1, at+1)−Q(st, at)] (3)The name Sarsa
omes from the ne
essary information for su
h an update, thequintuplet (st, at, Rt+1, st+1, at+1). Thus, in order to
ompute this update, theagent must know in advan
e its next state st+1 and the a
tion at+1 it is goingto take in that state. Su
h a method is said �On-Poli
y� sin
e it implies a strongdependen
y between the poli
y of the agent and its ability to update its modelof the Q-fun
tion.Q-learning Q-learning is simpler than Sarsa. Its update rule is:
Q(st, at)← Q(st, at) + α[Rt+1 + γ max

a
Q(st+1, a)−Q(st, at)] (4)The term Q(st+1, at+1) in equation 3 has been repla
ed by maxaQ(st+1, a)in equation 4. This time, the update rule is independent of what the agent willdo next, thus the algorithm is said �O�-poli
y�. This brings several pra
ti
al ad-vantages (in parti
ular, the learning pro
ess is more independent of the de
isionpro
ess and seems more robust, see [15, 16℄ for a dis
ussion) but also results ina simpler proof of
onvergen
e [11℄. Note that both equations would be identi
alif the agent was following a greedy poli
y, but it is not the
ase in general sin
ean agent must explore its environment in order to learn.Dis
ussion From the ba
kground se
tion above, we
an already draw two
on-
lusions on the most suitable methods for our appli
ation problem:� DP methods
annot be used as su
h in the
ontext of video games, be
ausethe dynami
s of the intera
tion between agents and their environment istoo
omplex and unpredi
table to be modeled by hand. There also existsmodel-based RL methods su
h as Dyna methods [17℄ that learn the modelof the environment before applying DP methods, but
annot be applied herebe
ause learning a non-stationary model of transition and rewards is toodi�
ult so far. Thus we have to rely on plain TD methods;

5� among TD methods, we prefer the O�-poli
y methods su
h as Q-learning toOn-poli
y methods su
h as Sarsa for the robustness reasons mentioned justabove.Thus, in the next se
tion, we will fo
us on Model-Free methods based on aO�-Poli
y algorithm su
h as Q-learning.2.2 Continuous Q-learning: a restri
ted state-of-the-artIn the previous se
tion, we have examined RL methods in dis
rete state anda
tion spa
es. When states and a
tions be
ome
ontinuous, the standard adap-tation of the RL methods
onsists in
hoosing a
lass of approximation fun
tionsto represent the
ontinuous value fun
tion and in tuning their parameters so asto mat
h the values known from single experien
es. Tuning the parameters
anbe done using a Widrow-Ho� update rule on the gradient of the Q-fun
tion 1:
∀i ∈ [0, N], ∆ωi = αδQL

∂Q(st, at)

∂ωiBut Baird has shown that these methods, though they are fast, may not
onverge [18℄. Instead, he shows the
onvergen
e of residual gradient methodsbased on the gradient of the TD error. We set b = arg maxa′Q(st+1, a
′) and wehave:

∀i ∈ [0, N], ∆ωi = −αδQL[
∂δQL

∂ωi

] = αδQL[
∂Q(st, at)

∂ωi

− γ
∂Q(st+1, b)

∂ωi

]On
e the tuning method is
hosen, we
an examine the
lasses of approxi-mation fun
tions that have been proposed to apply O�-poli
y RL algorithms to
ontinuous state and a
tion spa
es. We will do so thanks to the following list ofrelevant properties inspired from [16℄, but adapted to our parti
ular
ontext.Generalization ability Generalization
omes from the ability of approxima-tion fun
tions to give a
orre
t value in states that the agent never experi-en
ed before.Model-independen
e Tomat
h our appli
ation requirement, the method mustnot assume the availability of the transition and reward fun
tions in any way.Fast retrieval of the best a
tion (FRBA) Given that the state and a
tionare
ontinuous, �nding the best a
tion for a parti
ular state given the dif-ferent approximation fun
tion may be
omputationally expensive if the datastru
tures are heavy. This may be in
ompatible with the real-time require-ment of video games.Continuity Sin
e our appli
ation is navigation, we want our system to givevery similar a
tions as output from very similar states.1 We note δQL the temporal di�eren
e error
omputed by Q-learning

6Lo
ality If the system learns something around a parti
ular state, we do notwant the modi�
ation to impair something learned elsewhere in the statespa
e.Readability The more readable the output of the learning pro
ess is, the easierit is to debug and reuse the knowledge expressed.All systems studied in our state-of-the-art rely on an approximation of theQ-fun
tion, thus they all bene�t from a generalization ability. Furthermore, werestri
t the study to Model-independent systems.CMAC Introdu
ed by [19℄, the Cerebellar Model Arti
ulation Controller (CMAC)dis
retizes a
ontinuous state and a
tion spa
e into N overlapping partitions.Ea
h element of ea
h partition approximates the Q-fun
tion. The global valueof a given state is the sum of the values given by all partitions. Being one of theearliest systems, CMAC is a referen
e in the domain, but most re
ent systemshave a better performan
e and more interesting properties [3℄.Learning Classi�er Systems LCSs are rule-based systems
ombining RLalgorithms with Geneti
 Algorithms. XCS, the most studied LCS so far, hasre
ently been extended to deal with
ontinuous states [20℄ and a
tions [21℄. Themain advantages of LCSs are their readability and the fa
t that learning is lo
al.But they are very ine�
ient at retrieving the best a
tion and the
ontinuityproperty is not guaranteed sin
e two di�erent rules with similar
onditions
antrigger very di�erent a
tions.Dis
rete a
tions Neural Q-learning One way to deal with
ontinuous statesand a
tions
onsists in using a Neural Network (NN) with one input unit perper
eption and one output unit per a
tion. The triggered a
tion at ea
h timestep is the one whose
orresponding output unit is the most a
tivated. Some ofthese systems have been trained with Q-learning [22, 23℄. The problem is thatthe more a
tions are needed, the bigger the network must be. Moreover, likemost NN systems, this approa
h fails on the lo
ality and readability properties,parti
ularly in the
ase of multi-layer per
eptrons. The
ase of RBF networks isparti
ular and, in fa
t, mu
h
loser to our model presented in se
tion 3, but wewill not expand on that topi
 here.Continuous a
tions Neural Q-learning Among NN approa
hes
ombiningQ-learning with
ontinuous states and a
tions, Dynami
 Neural Fields [24℄ andQ-Kohon, a kind of Self Organizing Map, [25℄ do not mat
h our needs be
ausethey are slow to rea
h a steady state, hen
e to provide the best a
tion.The Wire Fitting Neural Network te
hnique [16℄ is of mu
h more interest tous. It
ombines a single layer per
eptron approximating the Q-fun
tion in anystate with a Wire Fitting interpolator [26℄ dedi
ated to the fast retrieval of thebest a
tion. This system mat
hes almost all our needs but fails on lo
ality andreadability, as all NN systems do.

7Lazy Learning Lazy Learning methods are also
alled memory-based methodsbe
ause they try to approximate the value fun
tion or the Q-fun
tion thanks toa rather simple storage of previous experien
es of the agent,
alled �
ases�.Previous
ases below a given distan
e τs to the
urrent state of the agent are�a
tivated�, thus used to interpolate the Q-fun
tion at that state, using a Lo
allyWeighted Average (LWA) or a Lo
ally Weighted Regression (LWR) [27℄.A new
ase is stored ea
h time there is no
ase to be a
tivated below adistan
e ∆s. Thus, ∆s
ontrols the density of
ases (see �gure 1).There are two main instan
es of Lazy Learning methods. The instan
e-basedlearning algorithm Hedger [4℄ works dire
tly in a joint state and a
tion spa
eand stores simple (si, ai, qi) triples in ea
h
ase.The
ase-based learning algorithm from [3℄ is more
omplex. First, it is basedon a Sarsa algorithm with eligibility tra
es (noted ei hereafter) rather than on Q-learning. Se
ond, the stru
ture of ea
h
aseCi is noted (si, Qi, ei, (aj , qij , eij)j=1...N),where the ve
tor (aj)j=1...N dis
retizes the a
tion spa
e. Third, instead of work-ing in a joint S ×A spa
e, it �rst applies a distan
e fun
tion ds between statesand then a distan
e fun
tion da between a
tion to determine the in�uen
e of ea
hprevious
ase in the interpolation. Fourth, the update rule
ombines an updateof the average Q-value over all a
tions (with a
oe�
ient ρ) and an update ofthe Q-values qi of the individual a
tions ai (with a
oe�
ient (1-ρ)) as follows:
Q(st, at) =

∑

Ci∈NNt

Ks(ds
it)∑

m Ks(ds
mt)

[ρ
∑

aj∈Ci

Ka(da
jt)∑

m Ka(da
mt)

qij + (1− ρ)Qi] (5)where Ks and Ka are kernel fun
tions determining the in�uen
e of ea
hprevious experien
e depending on the distan
es, ds
it is the distan
e between thestates st and si and da

jt is the distan
e between a
tions aj and at (see �gure 1).Both Lazy Learning approa
hes are lo
al and
ontinuous. But they do notprovide a fast retrieval of the best a
tion and their output is not easily readable.2.3 Dis
ussionproperty FRBA Continuity Lo
ality ReadabilityCMAC XLearning Classi�er Systems X XDis
rete a
tions Neural Q-learning XContinuous a
tions Neural Q-learning X XLazy learning X XTable 1. Synthesis of our state-of-the-artFrom table 1, one
an see that several
hoi
es are possible. But in [28℄, Baird
laimed that the Wire Fitting te
hniques used by [16℄
ould also be used in the

8
ontext of Lazy Learning methods, whi
h makes this
ategory more attra
tivethan the others. In the next se
tion, we present our adaptation of the
ase-basedalgorithm from [3℄ to our
ontext.3 Our model

C6

C4

C1

C3

C5

D
im

en
si

on
 2

C2

Dimension 1

Active cases
τ

∆

Current state

Fig. 1. Illustration of the
ase-based approa
h in 2D. Points C1 to C6 are previous
ases. Cases C1, C3 and C4 are a
tivated in the
omputation of the value at the
urrent state (bla
k dot). The in�uen
e of ea
h
ase in this
omputation is modulatedby the kernel fun
tions K
s and K

a shown on the left-hand side part of the �gure.Updates are applied to all a
tive
ases. For more details, see [3℄.Our model is similar to the one from [3℄, but di�ers on several respe
ts:� Rather than a Sarsa algorithm with eligibility tra
es, we use a residual gra-dient version of Q-learning;� We set ρ = 1 in equation 5; as a result, the Qi terms disappear of equation 5 ;� The initialization of Q-values is not
learly spe
i�ed in [3℄, thus we initializethe new
ase Cnew as (snew , (aj , qnewj)j=1...N), where snew = st is the newstate, and for ea
h a
tion aj , we set qnewj = Rnew
Ka(da

jt)∑
m

Ka(da
mt

)� Rather than a plain Eu
lidean distan
e, we use a weighted distan
e whi
htakes into a

ount the range of values of all dimensions in order to normalizetheir relative in�uen
e.As a
onsequen
e of the �rst modi�
ations, the stru
ture of
ases is mu
hsimpli�ed,
oming down to (si, (aj , qij)j=1...N). In experiments not des
ribedhere, we
he
ked that all the simpli�
ations above had no negative impa
t onthe performan
e with respe
t to the system des
ribed by [3℄.

94 Experimental study4.1 The Mountain-Car problemThe Mountain-Car problem is a
lassi
al ben
hmark for
ontinuous state RLalgorithms where a
ar must rea
h the top of a hill at the lowest possible speed.We follow the spe
i�
ation of [4℄. The authors indi
ate that, with a �ne-graineddis
retized tabular Q-learning, the average number of steps to the goal
onvergesslowly to 56 steps from 2500 initial positions (see �gure 2).4.2 Experimental results and Dis
ussion

 0

 50

 100

 150

 200

 0 50000 100000 150000 200000

M
ea

n
tim

e
to

 g
oa

l

Learning steps

Case-Based
Instance-Based

Tabular Q-Learning

Fig. 2. Comparison of the average number of steps ne
essary to rea
h the target posi-tion from 2500 initial positions, with tabular Q-learning (top), our
ase-based approa
h(bottom) and that of instan
e-based Hedger (the latter reprodu
ed from [4℄). Resultsare obtained from a greedy poli
y. Between ea
h performan
e measurement, a learningepisode
onsists in initializing the
ar randomly and allowing a maximum duration of200 time steps. Results are shown in steps rather than episodes here to give a moredetailed view.Figure 2 shows that, without any spe
i�
 optimization, our approa
h
on-verges mu
h faster and towards a better performan
e than Hedger.In [4℄, the authors propose a series of optimizations that signi�
antly improvethe performan
e of Hedger at su
h a point that their system �nally performsbetter than ours. In parti
ular, they use a form of prioritized sweeping whi
ha

elerates the learning pro
ess, but at the double
ost of having to wait for theend of an episode and storing all data during an episode. In video games, anepisode is virtually in�nite, thus this method
annot be applied as su
h.Thus our
laim is that our approa
h is more suited to real-time and highlynon-stationary environments su
h as video game than Hedger, both be
ause

10our
ase-based approa
h implies mu
h less memory requirements and be
ausein su
h
ontexts it is more important to
onverge fast towards a reasonablye�
ient poli
y rather than
onverging more slowly to a poli
y that would havebeen better if the environment had not
hanged in between.In order to further validate this
laim, we
he
k with additional experimentsthat our algorithm is able to deal e�
iently with two simple forms of non-stationarities.The �rst one is a sudden
hange in the dynami
s of the environment, su
hthat the value fun
tion must be
ompletely learned again. In order to test thissituation, we reverse the engine of the
ar ea
h 5000 episodes, so that break-ing be
omes a

elerating and vi
e versa. The se
ond one is a slow drift of thedynami
s of the environment. Here, the learner must responsively adapt its esti-mation of the value fun
tion while this fun
tion is
hanging. In order to test thissituation, we let the amplitude of the a

eleration of the
ar At evolve a

ordingto the equation At = A0(1 + 0, 5sin(2πt
T

)) where A0 is the standard amplitudeand T
orresponds to approximately 6000 learning episodes. Results are shownon �gures 3(a) and 3(b).
 0

 50

 100

 150

 200

 0 5000 10000 15000 20000 25000

M
ea

n
tim

e
to

 g
oa

l

Learning episode(a) 0

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

M
ea

n
tim

e
to

 g
oa

l

Learning episode(b)Fig. 3. (a) Performan
e when breaking and a

elerating are reversed ea
h 5000episodes. (b) Performan
e when the a

eleration amplitude is modi�ed over time. Ex-perimental
onditions are the same as in �gure 2. When the a

eleration amplitude isthe smallest, the
ar
an hardly rea
h the top of the hill.One
an see that, in ea
h
ontext, the system is able to modify the poli
yqui
kly so as to adapt the behavior of the agent to the varying environment.Nevertheless, in the
ontext of a radi
al and sudden
hange, it takes about 100learning episodes before the poli
y gets e�
ient again. In the
ontext of a slowdrift, the performan
e gets poorer than in the stationary
ase when the a

eler-ation is too weak to
ompensate for gravity, but the general loss of performan
eis small. Furthermore, we
he
ked that we
an redu
e T to approximately 1000learning episodes without further loss of performan
e. Thus the main
on
erngiven our target appli
ation
an be expressed as two questions:

11� are all the forms of non-stationarities that we will meet in video gamesapproximated well enough with both forms studied here?� will these non-stationarities be �ni
e� enough so that the loss of performan
eof the agent that they imply will stay a

eptable in terms of observed be-havior?It is
lear that some forms of non-stationarities due to the presen
e of otheragents or to
hanges in the reward fun
tion have not been tested in this paper.But we hope that the ability to
onverge fast is a general answer to all thesedi�erent questions, that would require di�erent treatments if they were to bedealt with expli
itly. This remains to be
he
ked empiri
ally.5 Con
lusion and Future workIn the
ase of a highly non-stationary and
ontinuous environment su
h as avideo game, rather than trying to deal expli
itly with the non-stationarity withad ho
 methods, our approa
h in this paper has been to look for an algorithmthat
onverges fast enough towards a
orre
t poli
y so that the behavior
an beadapted at any moment to the varying
ontexts.Our experiments have highlighted the plausibility of this approa
h in the
ontext of a well-known ben
hmark problem. The next thing to do now is to testour approa
h in the
ontext of a video games to
he
k if our basi
 assumptionsare veri�ed when
onfronted to the real di�
ulty.In parti
ular, we must
he
k that, in the
ontext of the Mountain-Car prob-lem, there were only three dis
rete a
tions. We will have to
he
k how our modelbehaves in the
ontext of
ontinuous a
tions implied by navigation problems.On a longer term, the result of this resear
h will have to be integrated with theprevious work of Robert [1℄ so as to
ombine the strengths of both
ontributions.Referen
es1. Robert, G.: MHiCS, une ar
hite
ture de séle
tion de l'a
tion Motivationnelle etHiérar
hique à Systèmes de Classeurs pour Personnages Non Joueurs adaptatifs.PhD thesis, Laboratoire d'Informatique de Paris 6 (2005)2. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristi
 determina-tion of minimal
ost paths. IEEE transa
tions on SSC 4 (1968) 100�1073. Santamaria, J.C., Sutton, R., Ram, A.: Experiments with reinfor
ement learningin problems with
ontinuous state and a
tion spa
es. Adaptive Behavior 6 (1997)163�2184. Smart, W.D., Kaelbling, L.P.: Pra
ti
al reinfor
ement learning in
ontinuousspa
es. In: 17th International Conferen
e on Ma
hine Learning. (2000) 903�9105. Bertsekas, D.P.: Dynami
 Programming and Optimal Control. Athena S
ienti�
,Belmont, MA (1995)6. Bellman, R.E.: Dynami
 Programming. Prin
eton University Press, Prin
eton, NJ(1957)7. Bellman, R.E.: Adaptive Control Pro
esses: A Guided Tour. Prin
eton UniversityPress (1961)

128. Puterman, M.L., Shin, M.C.: Modi�ed Poli
y Iteration Algorithms for Dis
ountedMarkov De
ision Problems. Management S
ien
e 24 (1978) 1127�11379. Sutton, R.S., Barto, A.G.: Reinfor
ement Learning: An Introdu
tion. MIT Press(1998)10. Watkins, C.J.C.H.: Learning with Delayed Rewards. PhD thesis, Psy
hology De-partment, University of Cambridge, England (1989)11. Watkins, C.J.C.H., Dayan, P.: Q-learning. Ma
hine Learning 8 (1992) 279�29212. Singh, S.P., Jaakkola, T., Littman, M.L., Szepesvari, C.: Convergen
e Results forSingle-Step On-Poli
y Reinfor
ement Learning Algorithms. Ma
hine Learning 38(2000) 287�30813. Sutton, R.S.: Learning to Predi
t by the Method of Temporal Di�eren
es. Ma
hineLearning 3 (1988) 9�4414. Jaakkola, T., Jordan, M.I., Singh, S.P.: On the Convergen
e of Sto
hasti
 IterativeDynami
 Programming Algorithms. Neural Computation 6 (1994) 1283�128815. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinfor
ement Learning: A Survey.Journal of Arti�
ial Intelligen
e Resear
h 4 (1996) 237�28516. Gaskett, C.: Q-Learning for Robot Control. PhD thesis, Australian NationalUniversity (2002)17. Sutton, R.S.: Dyna, an integrated ar
hite
ture for learning, planning and rea
ting.SIGART Bulletin 2 (1991) 160�16318. Baird, L.: Residual Algorithms: Reinfor
ement Learning with Fun
tion Approxi-mation. In: Pro
eedings of the 12th International Conferen
e on Ma
hine Learning,San Fran
is
o, CA, Morgan Kaufman Publishers (1995) 30�3719. Albus, J.S.: A New Approa
h to Manipulator Control: the
erebellar model arti
-ulation
ontroller (
ma
). Journal of Dynami
 Systems, Measurement and Control97 (1975) 220�22720. Wilson, S.W.: Get real! x
s with
ontinuous-valued inputs. In Lanzi, P.L., Stolz-mann, W., Wilson, S.W., eds.: Learning Classi�er Systems. From Foundations toAppli
ations. Springer, Berlin (2000) 209�21921. Wilson, S.W.: Classi�er systems for
ontinuous payo� environments. In: GECCO.(2004) 824�83522. Lin, L.J.: Self-Improving Rea
tive Agents based on Reinfor
ement Learning, Plan-ning and Tea
hing. Ma
hine Learning 8 (1992) 293�32123. Werbos, P.J.: Approximate Dynami
 Programming for Real-Time Control andNeural Modelling. In White, D., Solge, D., eds.: Handbook of Intelligent Control.Van Nostrand Reinhold, New York, NY (1992) 493�52524. Gross, H.M., Stephan, V., Krabbes, M.: A Neural Field Approa
h to Topologi-
al Reinfor
ement Learning in Continuous A
tion Spa
es. In: Pro
eedings of theIEEE World Congress on Computational Intelligen
e, IEEE Computer So
ietyPress (1998) 1992�199725. Touzet, C.: Neural Reinfor
ement Learning for Behaviour Synthesis. Roboti
s andAutonomous Systems: Spe
ial Issue on Learning Robots: the New Wave 22 (1997)251�28126. Baird, L., Klopf, A.H.: Reinfor
ement Learning with High-Dimensional ContinuousA
tions. Te
hni
al Report WL-TR-93-1147, Wright-Patterson Air For
e Base Ohio(1993)27. Atkeson, C.G., Moore, A.W., S
haal, S.: Lo
ally Weighted Learning. Arti�
ialIntelligen
e Review 11 (1996) 11�7328. Baird, L., Moore, A.W.: Gradient Des
ent for General Reinfor
ement Learning. In:Advan
es in Neural Information Pro
essing Systems 11, MIT Press (1999) 968�974

