
Improving Cooperation among
Self-Interested Reinforcement Learning Agents

Andrea Bonarini, Alessandro Lazaric, Enrique Munoz de Cote, and Marcello
Restelli

Politecnico di Milano, Department of Electronics and Information,
piazza Leonardo da Vinci 32, I-20133 Milan, Italy

{bonarini,lazaric,munoz,restelli}@elet.polimi.it

Abstract. In many Multi-Agent Systems (MAS), agents (even if self-
interested) need to cooperate in order to maximize their own utilities.
Repeated play in social dilemmas (e.g., the iterated prisoner’s dilemma)
is a challenging problem for learning algorithms, since the Nash Equi-
librium (NE) solution, pursued by most of the existing algorithms, is of-
ten inappropriate in these settings, while Pareto efficient (PE) solutions
guarantee a better outcome for each agent. In this paper we propose
two principles (Change or Learn Fast and Change and Keep) aimed at
improving cooperation among Q-learning agents in self-play. Using a n-
player and m-action version of the iterated prisoner’s dilemma, we show
how a best-response learning algorithm, such as Q-learning, improved as
proposed, can achieve better cooperative solutions in a shorter time.

1 Introduction

In this paper we mainly focus on problems of cooperation and coordination
between self-interested agents, where no explicit communication is possible and
agents can only perceive the actions taken by the other agents at the previous
time instant. Self-interested agents choose actions in order to maximize their
own reward signal disregarding the benefit or loss –in terms of utility– to the
other agents. In many multi-agents problems, even in not competitive settings,
conflicting interests may arise. In these scenarios it is needed for the agents to find
a compromise in order to maximize their own utilities. For this reason we focus on
an extension of the popular prisoner’s dilemma in which the Nash Equilibrium
solution is collectively dominated by Pareto efficient solutions. In multi-agent
learning systems, where one agent’s actions may strongly influence the behavior
of the whole system, normal learning techniques, like Q-learning, may exhibit
cyclic and unpredicted behaviors [11] because of the intrinsic non-stationary
characteristics typical of problems with multiple cooperating agents. Therefore,
we propose two different variants of the joint-action Q-learning algorithm in
order to deal with such non-stationarity and improve both its performance and
learning speed, while maintaining its characteristics of best-responser against
stationary opponents.

In the following section we review the main multi-agent learning approaches
and algorithms. In Section 3 we give some basic definitions about multi-agent
repeated matrix games, and we report the Q-learning algorithm that uses the
last joint action taken by agents as state. In Section 4, we propose two principles
to foster cooperation, and present how the Q-learning algorithm should be modi-
fied to follow them. Section 5 presents comparative results in a multi-agent social
dilemma, showing how the use of both the proposed principles improves coop-
eration among Q-learning agents. In Section 6 we discuss some related works,
while Section 7 contains conclusions and suggestions for future research.

2 Learning in Multi-agent Systems

Multi-agent learning (MAL) deals with the interaction between multiple com-
plete agents perceiving, reasoning, and acting in a common dynamical envi-
ronment. Reinforcement Learning (RL) algorithms have been widely adopted
to cope with multi-agent problems. One of the most popular solutions is Q-
learning, an on-line model-free RL algorithm that directly learns optimal poli-
cies in Markov Decision Processes (MDPs). Although Q-learning is inherently
single agent, it has also been used –with some success– in multi-agent coopera-
tive games [18], [15], [14]. Most of these works use Q-learning methods applied
without much modification, thus considering other agents as part of the envi-
ronment. This approach is sound when the other agents are playing stationary
policies making the environment an MDP for the learning agent; otherwise, prob-
lems arise since the environment is treated as non-stationary while other agents
are learning and changing their policies.

Most of the present multiagent learning techniques focus on learning one
shot game theoretic rest points (e.g., Nash Equilibria). Littman was the first
to explicitly account for others on 2-action, 2-player zero-sum games; in [9] he
introduced the Minimax-Q algorithm to calculate the minimax solution that
guarantees convergence to the unique NE in fully competitive games. Its coun-
terpart for two-player general-sum games is Nash-Q [7], which is basically an
extension of Minimax-Q pursuing a NE in this more general type of games,
thus providing a generalization for either cooperative or competitive situations.
Littman’s Friend-or-Foe-Q (FFQ) [10] is another extension of Minimax-Q that
classifies every other agent as “friend” or “foe” in the attempt of converging
to a coordination or adversarial equilibria in presence of multiple equilibria. A
further equilibrium learning technique is a generalization of Nash-Q that uses
a broader class of equilibria called Correlated Equilibria (CE-Q) [6]. Könönen’s
approach [8] uses the Stackelberg equilibrium for making learning agents with
different information to converge to asymmetric equilibrium points. The com-
plexity of finding an equilibrium in repeated and sequential games has been
studied by Littman and Stone in [12], in which they use a kind of punishment
so that mutual cooperation becomes a best response strategy.

Our main motivation in this work is focused on situations where agents have
to achieve an agreement to receive maximum reward; this coordination / cooper-

ation problem has, in the last decade, attracted much interest. Fully cooperative
solutions were the first steps towards the study of cooperation in agent soci-
eties. M. Tan [18] showed the possibility of using communication as a general
way of improving learning rates for cooperative agents . Claus and Boutilier
[3] presented a relationship between single-agent Q-learning and multiagent Q-
learning called joint-action learning (JALs) in fully cooperative repeated games
(team matrix games). Their results suggested that new exploration heuristics
may help convergence in complex games. Furthermore, they showed that having
much information available does not necessarily imply performing better.

Several proposals [4, 5] have been put forth sustaining the fact that NE is an
undesirable outcome in many repeated stage games (like social dilemmas). On
the other hand, they propose algorithms that attempt to reach a Pareto efficient
solution. The idea is to let the agents collectively find the joint strategy that
will give the maximum reward under an infinite horizon of interactions. Since
these approaches are more closely related to ours, a more detailed description
and comparison is reported in Section 6.

3 Repeated Matrix Games

A matrix game is a tuple 〈N , {Ai}i∈N , {Ri}i∈N 〉, where N is a collection of n
agents, Ai is the set of actions available to agent i, and Ri is its payoff matrix.
The i-th agent, simultaneously with the other agents, chooses an action from its
own action set Ai and, on the basis of the actions performed by all the agents,
receives a payoff ri according to its payoff function Ri. Let at = [at

1, a
t
2, ..., a

t
n]

be the joint action executed at iteration t, where the i-th agent has taken action
at

i, and at
−i is the joint action of all the players except player i. In a repeated

matrix (or normal form) game the agents repeatedly play the same matrix game
for an undefined number of iterations.

In this paper we focus on games where, at any stage, any agent can observe
the actions chosen by other agents, but knows neither the intentions of others,
nor the reward functions. However, although matrix games do not have state, in
repeated matrix games, learning agents may benefit from knowing the history of
joint actions [14]. Therefore, we do not refer to the single state Q-learning as in
[15], but we adopt a particular version where Q-learning states are represented
by the previous state game joint action (at−1), as in [5, 1]. Thus, an agent’s ex-
perience at any stage game is characterized not only by its own action and payoff
but also from all the actions actually executed by the agents in the environment
〈ai,a−i, ri〉. The main steps of Q-learning are reported in Algorithm 1.

The outcome of this process is to let the MAS collectively learn equilibrium
points that payoff dominate the best response dynamics of normal Q-learners.
The main problem of pairing best-response agents (i.e. Q-learners) in a repeated
game is that they may end up in cyclic or suboptimal behaviors. The reason for
this is that the parallel learning processes of all the agents cause the environ-
ment to be non-stationary, thus preventing agents from predicting the correct
outcome of their actions. In the next section we show how to overcome these

Algorithm 1 Q-learning
Let α be a learning rate
initialize Q(a, ai),∀a ∈ A, ai ∈ Ai

choose a random action a0
i

execute a0
i

read the joint action a0

t← 1
for all steps do

choose action at
i according to exploration strategy

execute at
i and get the payoff rt

i

read the joint action at

Q(at−1, at
i)← (1− α)Q(at−1, at

i) + α ·
(
rt

i + γ · arg maxai Q(at, ai)
)

t← t + 1
end for

inconveniences by the definition of two different learning principles that try to
lower the effects of the non-stationarity of the environment.

4 Making Q-learning More Cooperative

In this section we introduce two variants of the Q-learning algorithm, aimed
at improving cooperation, both in terms of performance and of learning speed,
among self-interested non-communicating Q-learning agents.

4.1 CoLF Principle

The CoLF (Change or Learn Fast) principle is inspired by the work of Bowl-
ing and Veloso [2], where a variable learning rate is considered. In particular,
they have proposed the WoLF (Win or Learn Fast) principle, which, applied
to rational learning algorithms, can make them convergent1. According to this
principle, the agent must learn quickly while losing and slowly while winning. Al-
though the WoLF variable learning rate has a convergent effect in many stochas-
tic games, when applied in self-play to social dilemmas it converges to the Nash
Equilibrium, thus failing to find a Pareto efficient solution ([16, 5]).

To foster cooperation, we propose to modify the learning rate of the algo-
rithm according to the CoLF principle: if the payoff achieved by an agent is
unexpectedly changing, then learn slowly, otherwise learn quickly. This princi-
ple aids in cooperation by giving less importance to “unexpected” payoffs (i.e.
payoffs that are quite different from those achieved recently in the same state by
the same action), probably generated by non-stationary causes like exploration
activity or normal learning dynamics of the other agents, while allowing to speed
up learning when the most of the agents are playing near-stationary strategies.

1 This was proved only in self-play for two-person, two-action, iterated general-sum
games

Algorithm 2 COLF – Change Or Learn Fast
Let αNS > αS , and λ be learning rates
P (a, ai)← S(a, ai)← 0,∀a ∈ A, ai ∈ Ai

Q(a, ai)← rmax
1−γ

,∀a ∈ A, ai ∈ Ai

choose a random action a0
i

execute a0
i

read the joint action a0

t← 1
for all steps do

choose action at
i according to exploration strategy

execute at
i and get the payoff rt

i

read the joint action at

∆rt
i ← |rt

i − P (at−1, at
i)|

if ∆rt
i > S(at−1, at

i) then
α← αNS

else
α← αS

end if
Q(at−1, at

i)← (1− α)Q(at−1, at
i) + α ·

(
rt

i + γ · arg maxai Q(at, ai)
)

S(at−1, at
i)← (1− λ)S(at−1, at

i) + λ ·∆rt
i

P (at−1, at
i)← (1− λ)P (at−1, at

i) + λ · rt
i

t← t + 1
end for

In Algorithm 2 we have reported how the Q-learning algorithm changes with
the introduction of the CoLF principle. For each pair 〈joint action, action〉,
besides the Q-value, the algorithm needs to store and update also the P and S-
values. The P-values are exponential averages of the collected payoffs with weight
factor λ, while the S-values are exponential averages of the absolute differences
between the current payoff and the respective P-value. The algorithm requires
two learning rates, one when the system shows rapidly varying payoffs (αNS)
and one when agents are playing near-stationary policies (αS), with αNS < αS .
The choice of which learning rate must be used to update the Q-value associated
to the pair 〈at−1, at

i〉 depends on whether the absolute difference between the
current payoff and the respective P-value is greater than the respective S-value.
In fact, since P-values are an estimation of the expected payoffs and S-values of
their variability, if the current payoff is near to the expected one, the environment
is supposed to be nearly stationary and Q-values can be updated with a high
learning rate (αS). On the other hand, when the current payoff is highly different
with respect to its average P, it is better for the agent to use a low learning rate
(αNS) in order to reduce the effect of non-stationarity on the update phase.

4.2 Change&Keep Principle

The Change&Keep (CK) principle is based on the following observation:
when an agent, due to either learning or exploration, decides to choose a dif-

Algorithm 3 CK – Change&Keep
status ← update
Let α be a learning rate
Q(a, ai)← rmax

1−γ
,∀a ∈ A, ai ∈ Ai

choose a random action a0
i

execute a0
i

read the joint action a0

t← 1
for all steps do

if status = update then
choose action at

i according to exploration strategy
else

at
i ← at−1

i

end if
execute at

i and get the payoff rt
i

read the joint action at

if status = update then
if at

i 6= at−1
i then

status ← keep
aupd ← at−1

else
status ← update
Q(at−1, at

i)← (1− α)Q(at−1, at
i) + α ·

(
rt

i + γ · arg maxai Q(at, ai)
)

end if
else

status ← update
Q(aupd, at

i)← (1− α)Q(aupd, at
i) + α ·

(
rt

i + γ · arg maxai Q(at, ai)
)

end if
t← t + 1

end for

ferent action, it typically collects an uninformative payoff. In fact, these (non-
stationary) changes cannot be foreseen by other agents, and the related payoffs
may be misleading, thus negatively affecting cooperation.

The idea of the CK principle is to discard the payoff received in correspon-
dence to a change in the action selection (thus suspending the Q-value update),
repeat the same action, and use the corresponding payoff for performing the
suspended update. In this way the agent gives time for the other agents to re-
act to its new action, thus using a more informative payoff for the update of
its Q-table. Figure 1 illustrates the two-states finite-state machine for CK. The
agent starts in state sC . While the agent selects the same action, it stays in
sC where it performs update and action selection according to its exploration
strategy. When the selected action changes, the agent passes in state sK without
performing the update and without observing the action of the other agents. In
sK the agent does not perform the action selection, but it simply repeats its last

s s

a i
t

i
t−1a =

Updatea i
t

i
t−1a =

Update

C K

Update
true

Fig. 1. CK finite-state machine. For each state transition are reported both the trigger
condition (above the line) and whether the update phase occurs or not (below the line).
In state sC the agent performs the usual action selection, while in state sK it repeats
the previous action.

action, updates the Q-table and comes back to state sC . Algorithm 3 shows how
the Q-learning algorithm can be combined with the CK principle.

5 Experimental Results

In this section, we compare the performance (in self-play) of Q-learning with
those obtained by our variants (CK, CoLF, and CK-CoLF, obtained by combin-
ing both the principles together) in the MASD (Multi-Agent Social Dilemma)
game [16], an extended version of the prisoner’s dilemma with n-players and
m-actions that preserves the same structure (one Nash equilibrium and a dom-
inated cooperative strategy). In the MASD game, N agents hold M resource
units each. At each iteration, the i-th agent must choose how many of its M
units will be allocated for a group goal G, while the remaining will be used for
a self-interested goal Si. Let ai be the amount contributed by agent i towards
goal G, and a = [a1, ..., aN] the joint action. The utility of agent i given the joint

action is Pi(a) = [1
N

∑N
j=1 aj]−kai

M(1−k) , where k ∈
(

1
N ; 1

)
is a constant that indicates

how much each agent estimates its contribution towards the selfish goal. The
payoff function is such that when all the agents put M units in the group goal,
each agent is rewarded with 1. On the other hand, if nobody puts units in the
group goal, a payoff of 0 is produced. If each agent adopts a random strategy
the expected average payoff is 0.5.

In order to choose the parameters for our experiments, we studied their
effects on a medium size MASD game with three agents and four actions (N =
3,M = 3). We have experimentally verified that high discount factors allow to
achieve better performances, but with a lower learning speed. For what concerns
exploration, as suggested in [17], the use of a relaxation search, obtained by
setting the initial values of the Q-table to high values, considerably improves
the results in this kind of repeated matrix games. Furthermore, we add an ε-
greedy exploration with the aim of reducing the probability of being trapped

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 P
ay

of
fs

Training Episodes (x 1000)

Q-learning with different learnig rates: N=3, M=3

Q-learning, α = 0.1
Q-learning, α = 0.2
Q-learning, α = 0.4
Q-learning, α = 0.8

(a)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 P
ay

of
fs

Training Episodes (x 1000)

CK with different learning rates: N=3, M=3

CK, α = 0.1
CK, α = 0.2
CK, α = 0.4
CK, α = 0.8

(b)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 P
ay

of
fs

Training Episodes (x 1000)

CoLF vs Q-learning: N=3, M=3

Q-learning, α = 0.1
Q-learning, α = 0.4

CoLF, αNS = 0.1, αS = 0.4

(c)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 P
ay

of
fs

Training Episodes (x 1000)

CK-CoLF vs CK: N=3, M=3

CK, α = 0.1
CK, α = 0.4

CK-CoLF, αNS = 0.1, αS = 0.4

(d)

Fig. 2. Plots showing the effect of different learning rates in the MASD problem with
3 agents, 4 actions, and k = 2/3. Each plot shows the moving average of the payoffs
obtained by agents in self-play over time. The results are averaged over 100 trials.

in a local maximum. On the basis of these considerations, in the experiments
we are presenting here, we have used the following parametrization: γ = 0.95,
Q(a, ai)init =

(
rmax

1−γ

)
, and ε = max(0.2 − 0.00006t, 0). For what concerns the

weight factor λ, used in the exponential averages of the CoLF principle (see
Section 4.1), we found the best results by putting λ = 0.1.

In Figure 2 we report some interesting results about learning rates. Fig-
ure 2(a) shows average payoffs obtained with different initial values of the learn-
ing rate α2. As already pointed out in [5], the use of low learning rates in Q-
learning allows to get higher payoffs, even if the time required to reach a cooper-
ative solution considerably increases. For comparison, in Figure 2(b) we report
the results of CK with the same learning rates. As we can see, the learning rate
variation has the same qualitative effect on both the algorithms, even if the per-
formance of CK are less affected by high learning rates. For what concerns the

2 In all the experiments the initial learning rate αi is decreased in the following way:
αt = αi

(1+0.0001·n(at−1,at
i)

, where n(at−1, at
i)) is the number of times that action ai

has been taken after the joint action at−1.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5

A
ve

ra
ge

 P
ay

of
fs

Number of Agents

Performance comparison with N increasing and M=1

Q-learning
CoLF

CK
CK-CoLF

(a)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 2 3 4 5

N
um

be
r o

f T
ria

ls

Number of Agents

Speed comparison with N increasing and M=1

Q-learning
CoLF

CK
CK-CoLF

(b)

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 2 3 4 5

A
ve

ra
ge

 P
ay

of
fs

Number of Agents

Performance comparison with N increasing and M=2

Q-learning
CoLF

CK
CK-CoLF

(c)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 2 3 4 5

N
um

be
r o

f T
ria

ls

Number of Agents

Speed comparison with N increasing and M=2

Q-learning
CoLF

CK
CK-CoLF

(d)

Fig. 3. Plots comparing performances and learning speeds of Q-learning, CoLF, CK,
and CK-CoLF in MASD problems with multiple agents and actions. Plots on the left
show the average payoff obtained by agents in self-play for a fixed number of actions
as the number of agents increases. On the right we have reported the number of trials
required to learn a constant joint policy. The results are averaged over 100 trials.

learning speed, CK performs poorly (less than the random policy, i.e. 0.5) for
many steps, but its learning curve is steeper than that of Q-learning; the result
is that both the algorithms (when using the same learning rate) reach a cooper-
ative solution nearly at the same time, with the difference that CK outperforms
Q-learning for every α, and actually reaches the PE solution for α = 0.1. For
what regards CoLF, we have chosen 0.1 for the non-stationary learning rate αNS ,
while we set the stationary learning rate to αS = 4 ·αNS . Figure 2(c) shows the
comparison between CoLF, Q-learning with learning rate αS , and Q-learning
with learning rate αNS . As we can see, using a variable learning rate according
to the CoLF principle, it is possible to achieve higher payoffs than those obtained
by Q-learning with a single learning rate. In fact, the algorithm succeeded in ex-
ploiting both the low learning rate for what concerns the payoff performance
and the high learning rate in terms of learning speed, that is comparable to the
one obtained by Q-learning with high learning rate. Similarly, in Figure 2(d) we

can see how CoLF improves the learning speed of CK, while still reaching the
PE solution.

Figure 3 shows comparative results among Q-learning, CoLF, CK, and CK-
CoLF on MASDs characterized by a different number of agents and actions3.
In Figure 3(a) are reported the performances of the four algorithms for MASDs
with two actions (M = 1) as the number of agents increases. Unsurprisingly, Q-
learning performs quite well in the two-player two-action game, but the average
payoff decreases quite quickly with a few more agents. CoLF performs slightly
worse than Q-learning for N = 2, while its performance degrades more gracefully
as N increases. CK and CK-CoLF are able to converge, almost in any case, to
mutual cooperation. Besides average payoff, the algorithms have been evaluated
on the basis of the number of learning trials required to reach a stable cooperative
solution. Figure 3(b) displays the average learning times of the four algorithms:
Q-learning is the slowest of the pool, while CK is slightly quicker. Algorithms that
use the CoLF principle learn to cooperate much faster (since they benefit from
using higher learning rates); in particular, CK-CoLF turns out to be the fastest
algorithm. Similar considerations hold (even with more evidence) for the results
on problems with three actions reported in Figures 3(c) and 3(d). However, it
is worth to notice that the learning times do not allow the application of the
algorithms to problems with tens of agents and actions.

From the graphs in Figure 3, it results that, using both Ck and CoLF prin-
ciples, Q-learning strongly improves its cooperative capabilities in self-play.

6 Related Works

Many works in literature investigated the possibility to reach Pareto efficient so-
lutions. In particular, we relate to the approaches based on an exhaustive search
over the joint action space until reaching an outcome that satisfies the agent’s
aspiration level. A series of work, leaded by Goodrich [5, 17, 16, 4], in n-players,
m-actions social dilemmas use a “floating” aspiration level to avoid an agent to
get unsatisfied against non cooperative players (reaching a NE) and reach near
Pareto efficient outcomes in self-play, without knowing neither the structure of
the game nor the actions of the other players [4]. As opposed to us, their algo-
rithm requires to use a random policy for (sufficiently big) n rounds and then
change to a deterministic satisficing policy. They replaced the NE perspective
with Nash bargaining, a perspective more suited for repeated interactions. Com-
paring our results to those obtained by [16], our modified versions of Q-learning
achieves a better performance, even if their approach does not rely the knowledge
of the other agents’ actions. Macy [13] uses a similar aspiration based approach
but only for 2-player, 2-action symmetric social dilemmas that, as in [4], needs
not neither the structure of the game nor the actions of the other players.

In [1] Banerjee proves convergence to Pareto-optimality using conditional
probabilities over a joint action learners (CJALs) for 2-action, 2-player dilem-
3 Experiments for Q-learning and CK use 0.1 as learning rate, while CoLF and CK-

CoLF use 0.1-0.4

mas. Convergence is guaranteed iff random exploration for N rounds is used, and
then each agent adopts a greedy (or bounded ε − greedy) policy. Littman and
Stone uses the weakness of best-response strategies and developed a “leader”
algorithm to teach best-response agents to play Pareto efficient solutions. On
the other hand, [5] proposes M-Qubed, an algorithm that provably satisfies a
security property so agents do not get less than the minimax value of the game,
and in several two player games empirically displays (in self play) a compro-
mise/cooperate property in hope of promoting cooperation.

7 Conclusions and Future Research

In this paper, we have proposed two heuristic principles to improve coopera-
tion among self-interested RL agents in repeated general-sum games. The CoLF
principle is mainly concerned with non-stationarity caused by the other agents;
it uses a variable learning rate that takes low values when the agent gathers
unexpected payoffs and a higher one when the environment is supposed to be
near-stationary. On the other hand, the CK principle deals with non-stationarity
induced in the MAS by the behavior of the agent itself; since actions selected
following a non-stationary learning policy may not be foreseen by other agents,
whenever an agent decides to change its action, according to the CK principle,
it should not perform the update, but it should repeat the same action and up-
date the related value with the latter payoff. The experiments carried out in the
MASD framework show that the proposed principles applied to a best-response
learning algorithm (Q-learning) largely improve its cooperation capabilities in
self-play, both in terms of performance and learning speed.

This work puts the bases for several future studies. It will be useful to in-
vestigate theoretical properties of the proposed heuristics, such as convergence
properties or the Cooperate/Compromise property [5]. For what concerns the
experimental activity, it will be interesting to study the effect of CK and CoLF
outside of self-play, in order to see if they are able to make also other learning
algorithms to reach a cooperative solution. Furthermore, it will be instructive to
verify whether the good results obtained in an extended version of the iterated
prisoner’s dilemma may be replicated in other social dilemmas such as chicken,
Shapley’s game, and tricky game.

Another important future research direction is about the exploration strat-
egy. Even if initializing the Q-table with high values allows to perform an exten-
sive exploration of the search space, in problems with many agents and many
actions, it leads to large learning times (notice the number of learning steps in
Fig. 3(b) and 3(c)). On the other hand, a simple ε-greedy exploration may not be
enough in problems with many agents and actions. The identification of smarter
learning strategies (e.g. the one proposed in [5]) is a key factor for increasing the
learning speed.

References

1. Dipyaman Banerjee and Sandip Sen. Reaching pareto optimality in prisoner’s
dilemma using conditional joint action learning. In Working Notes of the AAAI-
05 Workshop on Multiagent Learning, to appear.

2. Michael Bowling and Manuela Veloso. Multiagent learning using a variable learning
rate. Artificial Intelligence, 136:215–250, 2002.

3. Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in
cooperative multiagent systems. In Proceedings of the 6th Conference On Artificial
Intelligence (AAAI-98) and of the 11th Conference On Innovative Applications of
Artificial Intelligence (IAAI-98), pages 746–752. AAAI Press, 1998.

4. Jacob W. Crandall and Michael A. Goodrich. Learning ε-pareto efficient solutions
with minimal knowledge requirements using satisficing. In Proceedings of the 19th
National Conference On Artificial Intelligence. AAAI Press, 2004.

5. Jacob W. Crandall and Michael A. Goodrich. Learning to compete, compromise,
and cooperate in repeated general-sum games. In Proc. of ICML 2005, to appear.

6. Amy Greenwald, Keith Hall, and Roberto Serrano. Correlated-q learning. In
Proceedings of NIPS Workshop On Multiagent Learning, 2002.

7. Junling Hu and Michael P. Wellman. Multiagent reinforcement learning: Theoret-
ical framework and an algorithm. In Proceedings of ICML, 1998.

8. Ville Könönen. Asymmetric multiagent reinforcement learning. In Proceedings of
International Conference On Intelligent Agent Technology (IAT 03). IEEE Com-
puter Society, 2003.

9. Michael L. Littman. Markov games as a framework for multi-agent reinforcement
learning. In Proceedings of ICML, pages 157–163, 1994.

10. Michael L. Littman. Friend-or-foe q-learning in general-sum games. In Proceedings
of ICML, pages 322–328, 2001.

11. Michael L. Littman and Peter Stone. Leading best-response strategies in repeated
games. In Seventeenth Annual International Joint Conference On Artificial Intel-
ligence Workshop On Economic Agents, Models and Mechanisms, 2001.

12. Michael L. Littman and Peter Stone. A polynomial-time nash equilibrium algo-
rithm for repeated games. Decision Support Systems, 39:55–66, 2005.

13. Michael W. Macy and Andreas Flache. Learning dynamics in social dilemmas.
Proceedings of the National Academy of Sciences, 72(9):29–36, 2002.

14. Tuomas W. Sandholm and Robert H. Crites. Multiagent reinforcement learning in
the iterated prisoner’s dilemma. Biosystems, 37(1–2):147–146, 1995. Special Issue
on the Prisoner’s Dilemma.

15. Sandip Sen, M. Sekaran, and J. Hale. Learning to coordinate without sharing infor-
mation. In Proceedings of the 12th National Conference On Artificial Intelligence,
volume 1, pages 426–431, Seattle, Washington, 1994. AAAI Press.

16. Jeffrey L. Stimpson and Michael A. Goodrich. Learning to cooperate in a social
dilemma: A satisficing approach to bargaining. In Proceedings of ICML, 2003.

17. Jeffrey L. Stimpson, Michael A. Goodrich, and Lawrence C. Walters. Satisficing
and learning cooperation in the prisoner’s dilemma. In Proc. of IJCAI 2001, 2001.

18. Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents.
In Proceedings of ICML, pages 330–337, 1993.

