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ABSTRACT

Cognitive component analysis (COCA) is here defined as
the process of unsupervised grouping of data such that the
ensuing group structure is well-aligned with that resulting
from human cognitive activity. We have earlier demon-
strated that independent components analysis is relevant
for representing semantics, not only in text, but also in
dynamic text (chat), images, and combinations of text and
images. Here we further expand on the relevance of the
ICA model for representing context, including two new
analyzes of abstract data: social networks and musical fea-
tures.

1. INTRODUCTION

In this paper our aim is to discuss the generality of the so-
calledindependent component hypothesis. It is well docu-
mented that human perceptional systems can model com-
plex multi-agent scenery. Human cognition uses a broad
spectrum of cues for analyzing perceptual input and sepa-
rate individual signal producing agents, such as speakers,
gestures, affections etc. Unsupervised signal separation
has also been achieved in computers using a variety of in-
dependent component analysis algorithms [1]. It is an in-
triguing fact that representations are found in human and
animal perceptual systems which closely resembles the in-
formation theoretically optimal representations obtained
by independent component analysis, see e.g., [2] on vi-
sual contrast detection, [3] on visual features involved in
color and stereo processing, and [4] on representations of
sound features. Here we go one step further and ask:Are
such optimal representation rooted in independence also
relevant in higher cognitive functions? Our presentation is
largely qualitative and will mainly be based on simple vi-
sualizations of data and avoid unnecessary algebraic com-
plication.

Brittanica onlinedefines cognition as the ‘act or pro-
cess of knowing’, and continues:

Cognition includes every mental process that
may be described as an experience of know-
ing (including perceiving, recognizing, con-
ceiving, and reasoning), as distinguished from
an experience of feeling or of willing.

Wagensberg has recently argued the importance of be-
ing able to recognize independence for successful ‘life
forms’ [5]

A living individual is part of the world with
some identity that tends to become indepen-
dent of the uncertainty of the rest of the world

Thus natural selection favors innovations that increase in-
dependence of the agent in the face of environmental un-
certainty, while maximizing the gain from the predictable
aspects of the niche. This view represents a precision of
the classical Darwinian formulation that natural selection
simply favors adaptation to given conditions. Wagensberg
points out that recent biological innovations, such as ner-
vous systems and brains are means to decrease the sensi-
tivity to un-predictable fluctuations. Furthermore, by cre-
ating alliances, agents can in Wagensberg’s picture give
up independence for the benefit of a group, which in turns
may increase independence for the group as an entity. Both
in its simple one-agent form and in the more tentative
analysis of the group model, Wagensberg’s theory points
to the crucial importance ofstatistical independencefor
evolution of perception, semantics and indeed cognition.

While cognition may be hard to quantify, its direct
consequence, human behavior, has a rich phenomenol-
ogy which is becoming increasingly accessible to mod-
eling. The digitalization of everyday life as reflected, say,
in telecommunication, commerce, and media usage allows
quantification and modeling of human patterns of activity,
often at the level of individuals.

Grouping of events or objects in categories is funda-
mental to human cognition. In machine learning, classi-
fication is a rather well-understood task when based on
labelledexamples [6]. In this case classification belongs
to the class ofsupervisedlearning problems. Clustering is
a closely relatedunsupervisedlearning problem, in which
we use general statistical rules to group objects, without a
priori providing a set of labelled examples. It is a fasci-
nating finding in many real world data sets that the label
structure discovered by unsupervised learning closely co-
incides with labels obtained by letting a human or a group
of humans perform classification, labels derived from hu-
man cognition.Here we will define cognitive component
analysis (COCA) as the process of unsupervisedgroup-



ing of data such that the ensuing group structure is well-
aligned with that resulting from human cognitive activity.
Without directly using the phrase ‘cognitive component
analysis’, the concept of cognitive components appears
frequently in the context of Factor analysis of behavioral
studies, see e.g., [7, 8].

We have pursued grouping by independent component
analysis in several abstract data types including text, dy-
namic text (chat), images, and combinations hereof, see
e.g., [9, 10, 11, 12, 13]. In this presentation we will briefly
review our analysis of text data and add visualizations of
two new types of abstract data, namely co-worker net-
works and music, that further underlines the broad rele-
vance of the independent component hypothesis.

2. COGNITIVE COMPONENT ANALYSIS

In 1999 Lee and Seung introduced the method of non-
negative matrix factorization (NMF) [14] as a scheme for
parts-based object recognition. They argued that the fac-
torization of an observation matrix in terms of a relatively
small set of cognitive components, each consisting of a
feature vector and a loading vector (both non-negative)
lead to a parts based object representation. They demon-
strated this for objects in images and in text representa-
tions. More recently, in 2002, it was shown that very sim-
ilar parts-based decompositions were obtained in a latent
variable model based on positive linear mixture of positive
independentsource signals [15]. Holistic, but parts-based,
recognition of objects is frequently reported in perception
studies across multiple modalities and increasingly in ab-
stract data, where object recognition is a cognitive pro-
cess. Together these findings are often referred to as in-
stances of the more generalGestalt laws.

2.1. Latent semantic indexing (LSI)

Salton proposed the so-called vector space representation
for statistical modeling of text data, for a review see [16].
A term set is chosen and a document is represented by
the vector of term frequencies. A document database then
forms a so-called term-document matrix. The vector space
representation can be used for classification and retrieval
by noting that similar documents are somehow expected
to be ‘close’ in the vector space. A metric can be based
on the simple Euclidean distance if document vectors are
properly normalized, otherwise angular distance may be
useful. This approach is principled, fast, and language
independent. Deerwester and co-workers developed the
concept of latent semantics based on principal component
analysis of the term-document matrix [17]. The funda-
mental observation behind the latent semantic indexing
(LSI) approach is that similar documents are using sim-
ilar vocabularies, hence, the vectors of a given topic could
appear as produced by a stochastic process with highly
correlated term-entries. By projecting the term-frequency
vectors on a relatively low dimensional subspace, say de-
termined by the maximal amount of variance one would
be able to filter out the inevitable ‘noise’. Noise should
here be thought of as individual document differences in

term usage within a specific context. For well-defined
topis, one could simply hope that a given context would
have a stable core term set that would come out as a ‘direc-
tion’ in the term vector space. Below we will explain why
this is likely not to happen in general document databases,
and LSI is therefore often used as a dimensional reduction
tool, which is then post-processed to reveal cognitive com-
ponents, e.g., by interactive visualization schemes [18].
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Figure 1. Prototypical feature distributions produced by a
linear mixture, based on sparse (top), normal (middle), or
dense source signals (bottom), respectively. The charac-
teristic of the sparse signal is that it consists of relatively
few large magnitude samples on a background of small
signals.

2.2. Non-negative matrix factorization (NMF)

Noting that many basic feature sets are naturally posi-
tive and that a non-negative decomposition could lead to a
parts-based decomposition, Lee and Seung analyzed sev-
eral data sets using the NMF decomposition technique
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Figure 2. Latent semantic analysis of text, based on
Salton’s vector space representation reveals that the se-
mantic components are very sparse, as indicated in the
scatter plot of two components (top). We spot the sig-
nature of a sparse linear mixture: ‘rays’ emanating from
(0, 0). Performing a five component ICA on the subspace
spanned by the five most significant latent vectors, pro-
vide the mixing matrix with column vector as shown in
the second panel. Using a simple classification scheme
(magnitude of the source signal) yields a classifier with
less then10% error rate using the document labels manu-
ally assigned by a human editor. Below, in the third plot,
we indicate the corresponding normal model, with axis
aligned latent vectors. Finally, we show in the bottom plot
the results of an alternative unsupervised analysis, based
on clustering, using a Gaussian mixture model. While the
mixture model do capture the density well, the ensuing
components are not related in a simple way to content.

[14]. A basic difficulty of the approach is the possible
non-uniqueness of the components. This issue has been
discussed in detail by Donoho and Stodden [19]. A pos-
sible route to more unique solutions, hence, potentially
more interpretable and relevant components is to add a
priori knowledge, e.g., in form of independence assump-
tions. An algorithm for decomposing independent posi-
tive components from a positive mixture is discussed in
[15].

2.3. Independent component analysis (ICA)

Blind signal separation is the general problem of recover-
ing source signals from an unknown mixture. This aim is
in general not feasible without additional information. If

we assume that the unknown mixture is linear, i.e., that the
mixture is a linear combination of the sources, and further-
more assume that the sources are statistically independent
processes it is often possible to recover sources and mix-
ing, using a variety of independent component analysis
techniques [1]. Here we will discuss some basic charac-
teristics of mixtures and the possible recovery of sources.

First, we note that LSI/PCA can not do the job in gen-
eral. Let the mixture be given as

X = AS, Xj,t =
K∑

k=1

Aj,kSk,t, (1)

whereXj,t is the value ofj’th feature in thet’th mea-
surement,Aj,k is the mixture coefficient linking featurej
with the componentk, while Sk,t is the level of activity
in the k’th source. In a text instance a feature is a term
and the measurements are documents, the components are
best thought as topical contexts. Thek’th column Aj,k

holds the relative frequencies of term occurrence in doc-
uments within contextk. The source matrix elementSk,t

quantifies the level of expression of contextk in document
t.

As a linear mixture is invariant to an invertible linear
transformation we need define a normalization of one of
the matricesA,S. We will do this by assuming that the
sources are unit variance. As they are assumed indepen-
dent the covariance will be trivial,

ΣS = lim
T→∞

1
T

SS> = I. (2)

LSI, hence PCA, of the measurement matrix is based
on analysis of the covariance

ΣX = lim
T→∞

1
T

XX> = AA>. (3)

Clearly the information inAA> is not enough to uniquely
identify A, since if a solutionA is found, any (row) ro-
tated matrixÃ = AU,UU> = I is also a solution, be-
causeÃ has the same outer product asA.

This is a potential problem for LSI based analysis. If
the document database can be modelled as in eq. (1) then
the original characteristic context histograms will not be
found by LSI. The field of independent component anal-
ysis has on the other hand devised many algorithms that
use more informed statistics to locateA and thusS, see
[1] for a recent review.

The histogram of a source signal can roughly be de-
scribed as sparse, normal, or dense. Scatter plots of pro-
jections of mixtures drawn from source distributions with
one of these three characteristics are shown in Figure 1.
In the upper panel of Figure 1 we show the typical appear-
ance of a sparse source mixture. The sparse signal consists
of relatively few large magnitude samples in a background
of a large number of small signals. When mixing such in-
dependent sparse signals as in Eq. (1), we obtain a set of
rays emanating from origo. The directions of the rays are
directly given by the column vectors of theA-matrix.



If the sources are truly normal distributed like in the
middle panel of Figure 1, there is no additional informa-
tion but the covariance matrix. Hence, in some sense this
is a singular worst case for separation. Because we work
from finite samples an ICA method, which assumes some
non-normality, will in fact often find good approximations
to the mixing matrix, simply because a finite normal sam-
ple will have non-normal oddities. But fortunately, many,
many interesting real world data sets are not anywhere
near normal, rather they are typically very sparse, hence,
more similar to the upper panel of Figure 1.

3. COGNITIVE COMPONENTS FROM
UNSUPERVISED DATA ANALYSIS

Having argued that tools are available for recovering, rel-
atively uniquely, the underlying components in a mixture
we now turn to some illustrative examples. In a text anal-
ysis example we show that an ICA based analysis indeed
finds a small set of semantic components that very well
aligned with human assigned labels that were not used in
the analysis.

3.1. Text analysis

In Figure 2 (top) we indicate the corresponding scatter
plots of a small text database. The database consists of
documents with overlapping vocabulary but five different
(high level cognitive) labels [20]. The ‘ray’-structure is
evident. In the second panel we show the directions iden-
tified by ICA. If we use a simple projection based classi-
fication rule, and associate a ray with a topic, the classifi-
cation error rate is less than10% [20]. If an ICA is per-
formed with less components, the topics with close con-
tent are merged.

This rather striking alignment between human and ma-
chine classification in abstract features like those of vector
space text analysis, is a primary motivation for the present
work. In this example we also estimated an alternative
unsupervised model based on document clustering using
a gaussian mixture model. This model provides the repre-
sentation shown in bottom panel of Figure 2, in this case
the clusters are not specific enough to have a simple one-
to-one correspondence, however, with a limited amount of
supervision it will be possible to convert this cluster based
representation into a classifier with similar performance
as the ICA model.

3.2. Social networks

The ability to navigate social networks is a hallmark of
successful cognition. Is it possible that the simple un-
supervised scheme for identification of independent com-
ponents, whose relevance we have established above for
perceptual tasks, for context grouping in different media,
could play a role in this human capacity? To investigate
this issue we have initiated an analysis of a well-known
social network of some practical importance. The so-called
actor networkis a quantitative representation of the co-
participation of actors in movies, for a discussion of this
network, see e.g., [21]. The observation model for the

network is not too different from that of text. Each movie
is represented by thecast, i.e., the list of actors. We have
converted the table of the aboutT = 128.000 movies with
a total ofJ = 382.000 individual actors, to a sparseJ×T
matrix X. For visualization we have projected the data
onto principal components (LSI) of the actor-actor co-
variance matrix. The eigenvectors of this matrix are called
‘eigen casts’ and represent characteristic communities of
actors that tend to co-appear in movies. The sparsity and
magnitude of the network means that the components are
dominated by communities with very small intersections,
however, a closer look at such scatter plots reveals detail
suggesting that a simple linear mixture model indeed pro-
vides a reasonable representation of the (small) coupling
between these relative trivial disjunct subsets, see Figure
3.

Such insight may be used for computer assisted navi-
gation of collaborative, peer-to-peer networks, for exam-
ple in the context of search and retrieval.
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Figure 3. The so-called actor network quantifies the col-
laborative pattern of 382.000 actors participating in al-
most 128.000 movies. For visualization we have projected
the data onto principal components (LSI) of the actor-
actor co-variance matrix. The eigenvectors of this matrix
are called ‘eigencasts’ and they represent characteristic
communities of actors that tend to co-appear in movies.
The network is extremely sparse, so the most promi-
nent variance components are related to near-disjunct sub-
communities of actors with many common movies. How-
ever, a close up of the coupling between two latent se-
mantic components (the region∼ (0, 0)) reveals the ubiq-
uitous signature of a sparse linear mixture: A pronounced
‘ray’ structure emanating from (0,0). We speculate that
the cognitive machinery developed for handling of inde-
pendent events can also be used to locate independent sub-
communities, hence, navigate complex social networks, a
hallmark of successful cognition.

3.3. Musical genre

The growing market for digital music and intelligent mu-
sic services creates an increasing interest in modeling of
music data. It is now feasible to estimate consensus musi-



cal genre bysupervisedfrom rather short music segments,
say 10-30 seconds, see e.g., [22], thus enabling comput-
erized handling of music request at a high cognitive com-
plexity level. To understand the possibilities and limita-
tions for unsupervised modeling of music data we here
visualize a small music sample using the latent seman-
tic analysis framework. The intended use is for a music
search engine function, hence, we envision that a largely
text based query has resulted in a few music entries, and
the algorithm is going to find the group structure inher-
ent in the retrieval for the user. We represent three tunes
(with human labels:heavy, jazz, classical ) by
their spectral content in overlapping small time frames
(w = 30msec, with an overlap of10msec, see [22], for
details). To make the visualization relatively independent
of ‘pitch’, we use the so-called mel-cepstral representation
(MFCC,K = 13 coefficients pr. frame). To reduce noise
in the visualization we have ‘sparsified’ the amplitudes.
This was achieved simply by retaining only coefficients
that belonged to the upper5% magnitude fractile. The to-
tal number of frames in the analysis wasF = 105. PCA
provided unsupervised latent semantic dimensions and a
scatter plot of the data on the subspace spanned ny two
such dimensions is shown in Figure 4. For interpretation
we have coded the data points with signatures of the three
genres involved. The ICA ray-structure is striking, how-
ever, we note that the situation is not one-to-one as in the
small text databases. A component quantifies a character-
istic ‘theme’ at the temporal level of a frame (30msec), it
is an issue for further research whether genrerecognition
can be done from the salient themes, or we need to com-
bine more than one theme to reach the classification per-
formance obtained in [22] for10−30 second un-structured
frame sets.

4. CONCLUSION

Cognitive component analysis (COCA) was defined as the
process of unsupervised grouping of data such that the en-
suing group structure is well-aligned with that resulting
from human cognitive activity. It is well-established that
information theoretically optimal representations, similar
to those found by ICA, are in use in several information
processing tasks in human and animal perception. By
visualization of data using latent semantic analysis-like
plots, we have shown that independent components anal-
ysis is also relevant for representing semantic structure, in
text and also in other abstract data such as social networks,
and musical features. We therefore speculate that the cog-
nitive machinery developed for analyzing complex per-
ceptual signals from multi-agent environments may also
be used in higher brain function, such as understanding
music or navigation of complex social networks, a hall-
mark of successful cognition. Hence, independent com-
ponent analysis given the right representation may be a
quite generic tool for COCA.

−5 −4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3
COGNITIVE COMPONENTS

LATENT DIMENSION 1

LA
TE

N
T 

D
IM

EN
SI

O
N

 5

CLASSICALJAZZ MUSIC 

HEAVY METAL

Figure 4. We represent three music tunes (with la-
bels: heavy metal, jazz, classical ) by their
spectral content in overlapping small time frames (w =
30msec, with an overlap of10msec, see [22], for de-
tails). To make the visualization relatively independent
of ‘pitch’, we use the so-called mel-cepstral representa-
tion (MFCC,K = 13 coefficients pr. frame). To reduce
noise in the visualization we have ‘sparsified’ the ampli-
tudes. This was achieved simple by keeping coefficients
that belonged to the upper5% magnitude fractile. The to-
tal number of frames in the analysis wasF = 105. Latent
semantic analysis provided unsupervised subspaces with
maximal variance for a given dimension. We show the
scatter plot of the data on a 2D subspace within an original
5D PCA. For interpretation we have coded the data points
with signatures of the three genres involved: classical (∗),
heavy metal (diamond), jazz (+). The ICA ray-structure
is striking, however, note that the situation is not one-to-
one (ray to genre) as in the small text databases. A com-
ponent (ray) quantifies a characteristic musical ‘theme’ at
the temporal level of a frame (30msec), i.e., an entity sim-
ilar to the ‘phoneme’ in speech.
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