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ABSTRACT 
 
Categorization is a primary application for conceptual 
knowledge stored in the human brain. Categorization 
is often based on similarity, involving apparent use of 
both prototypes and stored exemplars. Some human 
categorization appears to be rule or theory based 
rather than based on similarity. Attempts to model 
categorization often involve multiple subsystems to 
support the different observed approaches. Any sys-
tem which must perform a large number of different 
but interdependent behaviours with limited informa-
tion handling resources will tend to be constrained 
within a form called the recommendation architecture. 
Physiological structures in the brain resemble the 
forms of this recommendation architecture. The in-
formation recording and access mechanisms of the 
recommendation architecture result in all the different 
categorization phenomena and use only a single 
knowledge representation system. Categorization phe-
nomena differ only in the ways in which information 
is accessed from the representation system. 
 

1. INTRODUCTION 
 
In brains, information derived from sensory inputs 
must be organized by physiological processes in such 
a way that higher cognition can be supported. This 
organizational structure is the way in which knowl-
edge is represented. For any system, whether elec-
tronic or biological, solving a particular type of prob-
lem is made easier by an appropriate choice of knowl-
edge representation. A typical illustration of this point 
is that simple additions are easier with Roman numer-
als, long division is much easier using Arabic numer-
als than with Roman numerals, and binary numbers 
are the best way to represent numbers in a computer. 
However, there is no representation which is ideal for 
every type of problem. 

One major issue for the human brain is therefore 
how to organize information derived from sensory 
experiences in a way which is adequate to support the 
very wide range of different problems which the brain 
must solve. Some of these problems which must be 
solved are the needs to generate appropriate physical 
behaviours while moving about the world, acquiring 
food, avoiding threats, and engaging in complex social 

behaviours etc. Others include higher cognitive proc-
esses such as categorization, speech processing, and 
reasoning. Equivalent information could of course be 
organized and stored in many different ways to sup-
port different types of problem, but this approach will 
tend to be ruled out by resource limitations. 

A further issue is the need to define the content of 
the knowledge representations heuristically. This issue 
strongly interacts with the resource issue. The content 
of the knowledge representation in the brain must 
change to support learning, but because resource limi-
tations mean that the same representation must be 
used for solving many different types of problem, 
changes which benefit one type of problem can easily 
result in undesirable side effects on the capability to 
solve other problem types.  

The tension between resource limitations and 
need for learning without side effects forces any sys-
tem which must learn many different behaviours 
within a set of architectural constraints called the rec-
ommendation architecture [1]. Electronic systems with 
the recommendation architecture have been imple-
mented and their capabilities confirmed [2; 3; 4]. The 
brain must learn many different types of behaviour, 
and natural selection will tend to favour brains which 
require fewer resources. The human brain will there-
fore tend to be constrained within the recommendation 
bounds and there are in fact some strong resemblances 
between brain physiology and recommendation archi-
tecture forms [3; 5]. 

There have been a range of categorization proce-
dures observed in human subjects, including evaluat-
ing whether an object resembles a prototype defining 
the category, resembles a range of different recorded 
exemplars of the category, meets rules defining a 
category, or has features which can be explained by a 
theory defining the category. It has been proposed that 
these procedures require different brain systems. Such 
a multiple subsystem approach raises the issue of 
whether the different subsystems can make use of the 
same information structures, or if more and/or dupli-
cate information must be recorded to support the dif-
ferent subsystems. 

The objective of this paper is to demonstrate that 
the limited range of information recording and access 
mechanisms utilized in the recommendation architec-
ture model support all the different categorization pro-



cedures using a common knowledge representation 
structure. The differences between the procedures 
reflect different ways in which the same information is 
accessed. The observed categorization phenomena 
thus result naturally in any system within the recom-
mendation architecture bounds. 

 
2. THE THEORY OF CONCEPTS 

 
The human mind is capable of thinking about an im-
mense range of concepts. Some concepts are everyday 
(such as dog or house). Others can be distant in space 
or time (such as stars or extinct animal species). Yet 
others can be intricate abstractions from everyday 
experiences (such as democracy or the number pi), 
and others can be non-existent but imaginable (such as 
elephants with wings). 

Attempts to create a theory of how concepts are 
defined began in antiquity. In the classical theory, 
concepts are complex mental representations with a 
structure that specifies a group of necessary and suffi-
cient core characteristics for the concept to be appli-
cable. These characteristics may themselves be con-
cepts made up of more detailed characteristics. For 
example, the concept BATCHELOR would be a com-
plex mental representation with characteristics 
UNMARRIED and MAN. When categorizing a per-
ception, a concept is accessed and decomposed into its 
characteristics, and the perception checked for the 
presence of all these characteristics. If all are present, 
the perception is categorized as an instance of the 
concept. A concept is learned by bringing together a 
group of pre-existing concepts to define a new con-
cept. The major problem with this classical theory is 
the inability to define indisputable core characteristics 
for any real categories. A key example of this is the 
category GAME as discussed by Wittgenstein [6]. 
Wittgenstein considered a number of plausible defini-
tions in terms of core characteristics, and demon-
strated that in every case a clear example could be 
found of a game which did not meet the definition. 

Psychological observations also provide difficul-
ties for classical concept theory. Some of the key is-
sues are that subjects identify typical members of a 
category more rapidly than less typical and subjects 
tend to produce more typical category instances when 
asked for examples [e.g. 7].  

Prototype theory [8] attempts to overcome some 
of the difficulties with the classical theory. In this the-
ory, concepts are defined by prototypes made up of a 
list of features, each feature having a weight. A per-
ception would be categorized as an instance of the 
concept if and only if it possessed a sufficient number 
of these features, weighted for their importance. In 
one version of prototype theory a concept such as 
FRUIT would include attributes like contains seeds, is 
sweet, grows on trees and is round. An instance would 
be categorized as fruit if and only if it possessed a 
sufficient number of these characteristics weighted for 
their importance [9]. 

Thus category membership of a concept is deter-
mined by computing a measure of similarity based on 
the degree of feature match and comparing the degree 
of match with a threshold band of values. A similarity 
above the band indicates category membership. A 
similarity below the band indicates non membership. 
A similarity within the band indicates that member-
ship depends upon context or occasion. Prototype the-
ory can therefore provide an account for the inherent 
fuzziness of many categories, as in the observations of 
McCloskey and Glucksberg [10] who showed that 
subjects disagree on categorization, but generally only 
for less typical instances. 

In exemplar theory, concepts are defined by the 
recording of a range of instances of the concept. Ob-
jects are classified on the basis of their similarity to 
these stored exemplars [11]. A key advantage of ex-
emplar theory over prototype theory is that it provides 
an account for the observations that in human beings 
the actual instances perceived in a learning phase have 
a strong effect on categorization accuracy during a 
subsequent test phase. For artificial category learning 
in the laboratory [e.g. 12], new instances of a category 
which are strongly similar to individual training in-
stances but less similar to the category average are 
identified more accurately than new instances which 
are more similar to the average but strongly similar to 
fewer individual training instances. Thus in these ex-
periments, similarity to specific examples is more im-
portant that similarity to the category prototype. 

A similar effect has been observed in real experi-
ence. In the experiments of Brooks, Norman and Allen 
[13], a number of photographs of different derma-
tological conditions with known diagnosis were ob-
tained. Groups of four photographs were created, all 
instances of the same condition. Within a group there 
were two pairs of photographs. The photographs 
within a pair were similar, but the pairs were more 
different. In a training phase, doctors with derma-
tological experience were exposed to one photograph 
from a number of different groups and told the correct 
diagnosis. Later they were shown different photo-
graphs from the same groups as in the training phase 
and asked to select a diagnosis. Performance was bet-
ter if the test photograph was more similar to the train-
ing photograph. 

However, as pointed out by Brooks, Norman and 
Allen, a prototype model in which recent instances 
resulted in disproportionate changes to the weights of 
prototype features could also account for the observa-
tions. 

A number of workers have also claimed a closer 
quantitative experimental match to predicted perform-
ance profiles for exemplar theories in laboratory ex-
periments, but Minda and Smith [14] have argued that 
if prototype and exemplar models with the same pa-
rameters and power are used, this difference disap-
pears. 

Some recent theorizing on similarity based per-
ceptual classification has generated a number of mod-



els with multiple categorization systems [11]. These 
models tend to have one subsystem which categorizes 
on the basis of rules or prototypes, and a second sub-
system which uses more specific representations like 
stored exemplars. The problem with such models is 
that they are so flexible, with numerous adjustable 
parameters, that they can be made to match any ex-
perimental result. 

The classical, prototype and exemplar theories all 
conceive of concepts as being based on similarity, and 
concept learning and use is based upon determining 
the similarity between a stored representation of a 
category and the particular instance to be categorized. 
However, this does not always appear to be an ade-
quate basis. Thus Barsalou [15] pointed out that there 
are what he called ad hoc categories such as THINGS 
TO TAKE ON A CAMPING TRIP. There may be 
minimal apparent similarity between objects in the 
same conceptual category. Furthermore, some catego-
ries are defined by rules rather than similarity. For 
example, Tienson [16] pointed out that a triangle with 
a small part of one corner cut off by a line is catego-
rized as a quadrilateral although it still strongly re-
sembles a triangle. Keil [17] pointed out that people 
have theories that embody relationships between 
properties and determine categorizations. For exam-
ple, when presented with a dolphin or whale with the 
appearance of a fish but the insides and lineage of a 
mammal, adults categorize it as a mammal. 

Such dissociations between similarity and catego-
rization imply the need for a rule based or theory 
based models as well as similarity based models. 
Models for mature concepts therefore tend to have two 
components [18]. There has been a tendency for simi-
larity based information to be viewed as primary, 
based on the assumptions that similarity based catego-
rization is learned first by children and similarity 
based information is accessed faster. However, Keil, 
Smith, Simons and Lev in [19] present both theoreti-
cal and experimental reasons why neither of these 
assumptions are correct. 

There has thus been a tendency for models of 
concepts and the categorization process to become 
very complex, with multiple, semi-independent sub-
systems required to provide an account for psycho-
logical observations. Thus Smith, Patalano and Jon-
ides [20] suggest that there are four procedures for 
determining whether a test object belongs to a particu-
lar category. These are: 
 
• Determine the similarity of the object to the cate-

gory prototype. 
• Determine the similarity of the object to remem-

bered category exemplars. 
• Determine whether the object fits a rule defining 

the category. 
• Determine whether the features of the object are 

best explained by the “theory” that underlies the 
category. 
 

This modeling approach raises the question of 
whether these procedures can share information de-
rived from sensory inputs. 

 
3. THE RECOMMENDATION ARCHITECTURE 

 
The recommendation architecture is a set of architec-
tural bounds within which any system which must 
learn a complex combination of behaviours with lim-
ited resources will be constrained [1]. In other words, 
as the number of different behaviours increases, unless 
there are enough resources to allow behaviours to op-
erate independently with duplication of similar infor-
mation storage and processing for different features, 
the recommendation architecture becomes the only 
way to avoid catastrophic interference between early 
and later learning. A detailed description of an elec-
tronic implementation of a system with the recom-
mendation architecture is available in [3].  

At the highest level, a system with the recom-
mendation architecture separates into two major sub-
systems called clustering and competition. Clustering 
selects, records and detects information conditions 
within the input space available to the system. A con-
dition is defined by a subset of the sensory inputs 
available to the system, each input having a specified 
state. The condition occurs if all the inputs are in their 
specified state. 

Many of these conditions are used to determine 
when and where additional conditions will be re-
corded, and a small subset of condition detections are 
released to competition. Competition interprets each 
condition detection as a recommendation in favour of 
a range of different behaviours, each with a different 
weight. Competition identifies the behaviour with the 
strongest total recommendation weight across all cur-
rently detected conditions and implements that behav-
iour. Recommendation weights are changed by conse-
quence feedback following a behaviour, but condi-
tions are not changed by such consequence feedback. 

As discussed in detail in [1], once a condition is 
recorded it cannot be changed. In other words, if a 
condition has been detected once, a future exact repe-
tition will always also be detected. The reason for this 
condition permanence is that when a condition is re-
corded it may acquire a range of different behavioural 
meanings in competition. Subsequent changes, for 
example to improve one behaviour, will in general 
result in undesirable side effects on other behaviours 
which outweigh any benefit. Close management of 
condition recording is therefore required to ensure that 
recording is limited and conditions are as behaviour-
ally useful as possible. 

This permanence of condition recording means 
that clustering is similarity based. 
 
Figure 1. A condition recording device 
 

The number of possible conditions in a large input 
space is enormous. If conditions and behaviours are 
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defined heuristically, there will be a random element 
to the selection of conditions. Because conditions are 
not subsequently changed, they will not correlate ex-
actly with cognitive features or circumstances in 
which a particular behaviour is appropriate. All condi-
tions are therefore cognitively and behaviourally am-
biguous, and unambiguous meanings are only 
achieved by interpretation of groups of conditions in 
competition. 

Within clustering, a device records a set of similar 
conditions. In this context two conditions are similar if 
a high proportion of their inputs are the same or tend 
to occur frequently at the same time. Such a device is 
illustrated in figure 1. Different groups of inputs de-
fine different conditions. In addition, somewhat larger 
groups of inputs define provisional conditions which 
will not be detected unless some special circumstances 
occur. The device has change management inputs that 
excite the recording of additional conditions, and other 
change management inputs that inhibit such recording. 
These change management inputs are derived from 
different groups of condition recording devices and 
indicate the average level of activity within the group.  

If a high proportion of the inputs to a provisional 
condition are active, if no regular conditions are being 
detected, if inputs exciting condition recording are 
active and if inputs inhibiting such recording are inac-
tive, a new condition will be recorded. This condition 
is the subset of provisional inputs which are active, 
and any subsequent repetition of the condition will be 
detected independent of the status of the change man-
agement inputs. A device also has inputs which can 
activate it in the absence of any of its programmed 
behaviours. Such activations are behaviours which 
must be accepted by competition. As discussed below, 
such activation behaviours expand the range of condi-
tions available to influence cognitive behaviour on the 
basis of past activity of the conditions at the same time 
as currently active conditions. 

Condition detecting devices are organized in lay-

ers. One layer detects conditions which are combina- 

 
Figure 2. A group of column modules across a se-
quence of four layers 

 
tions of the conditions detected by the preceding layer. 
Layers therefore detect conditions on different levels 
of complexity relative to sensory inputs. A hierarchy 
of modules is overlaid on the layer structure. A small 
area of one layer forms a layer module. A sequence of 
layer modules forms a column module. A parallel set 
of column modules  forms  an array module, as shown 
in figure 2. A sequence of arrays  detecting conditions  
within different ranges of complexity form an area 
module. 

A specific layer module produces outputs to com-
petition, the set of conditions detected by that layer 
module are called the portfolio of the column. Such an 
output indicates that one or more portfolio conditions 
are present, but does not identify the conditions in 
detail. Conditions within one portfolio are similar 
and/or tend to occur at the same time, and tend to be 
different from the conditions in different portfolios. 
Conditions are recorded in response to a sensory input 
state if no existing portfolio is detecting conditions, 
and are recorded in the portfolio which contains con-
ditions most similar to conditions actually occurring in 
the input state. If no conditions in the input state are 
sufficiently similar, a new portfolio can be initiated. 
Various layer modules within a column excite condi-
tion recording in their own column or inhibit condition 
recording in other columns or their own column in 
such a way that the similarities within a column port-
folio and differences between portfolios are achieved, 
as described in detail in [3]. 

There are some conceptual similarities between 
portfolios and independent components analysis [21] 
in the sense that portfolios decompose a sequence of 
input states into partially statistically independent 
“features” in an unsupervised manner. The critical 
differences are firstly that portfolios can constantly 
evolve by addition of new conditions. This evolution 
means that new types of input states can be decom-
posed using an existing portfolio framework. An array 
of columns evolves in such a way that a number of 
portfolios are detected in every input state. The second 
difference is that portfolio evolution occurs in such a 
way that the occurrence of any previous portfolio 
definition will be detected by the latest portfolio. In 
other words, the volume of the input phase space to 
which a portfolio responds can expand but not con-
tract. Behavioural interpretations placed upon the de-
tection of a portfolio are therefore relatively stable.  

device
layer 
module

column 
module

A third difference is that although portfolios are 
relatively stable, additional portfolios can be defined 
in the similarity space of a group of portfolios if there 
is an indication of need. Such an indication would be 
if the group was often active prior to one particular 
behaviour, and in these circumstances the conse-
quences of the behaviour were sometimes positive and 
sometimes negative. The implication is that the exist-



ing portfolios do not adequately discriminate between 
behaviourally significant input differences. Adding 
portfolios does not affect the use of the existing port-
folios for other behaviours. 

Portfolios will not correspond exactly with, for 
example, cognitive features. No one portfolio will be 
present if and only if a particular feature is present. 
Rather, there will be a group of portfolios which tend 
to be present more often when a particular feature is 
present. Weights in favour of behaviours appropriate 
to the presence of the feature can be given to all such 
portfolios, and high integrity behaviour management 
achieved [3]. 

For example, portfolios defined in response to ex-
periences of different instances of different types of 
FRUIT would not correspond exactly with characteris-
tics like sweet, round, contains seeds, red etc. Rather, 
a portfolio would be initiated around an information 
condition which happened to occur in a sensory ex-
perience (which might or might not correspond with a 
fruit) and would be expanded by addition of condi-
tions which were similar and/or happened to occur at 
the same time. One portfolio might contain some con-
ditions correlating with redness, some with roundness. 
Such a portfolio would be activated in response to a 
red apple, but also a red ball. Such a portfolio would 
acquire recommendation strengths in favour of behav-
iours appropriate to both apples and balls. Appropriate 
behaviour is determined by the total recommendation 
strengths across all currently active portfolios. How-
ever, although portfolios do not correlate with fea-
tures, they must be defined in such a way that al-
though they can discriminate between any two sensory 
experiences with different behavioural implications, 
they not proliferate excessively. The structures and 
processes of the recommendation architecture ensure 
that this compromise is achieved [3]. 

The stability of portfolios under change means 
that activation of portfolios on the basis of past activ-
ity at the same time as currently active portfolios can 
be meaningful and behaviourally useful. These activa-
tions are themselves behaviours which must be rec-
ommended by an adequate population of currently 
active portfolios. Any one portfolio will acquire rec-
ommendation strengths in favour of a range of differ-
ent behaviours, and in this sense any one portfolio is 
behaviourally ambiguous. 

 
4. INFORMATION RECORDING AND ACCESS 
MECHANISMS IN THE RECOMMENDATION 

ARCHITECTURE 
 

If a condition within a portfolio occurs in an input 
state, the portfolio will be activated. This portfolio 
will have recommendation strengths in favour of be-
haviours which were appropriate in response to simi-
lar input states in the past. However, there may be 
other portfolios which could provide relevant recom-
mendation strengths in response to the current input 
state which are not directly activated by condition 

occurrence. Such other portfolios include portfolios 
which have recently been active at the same time as an 
active portfolio, portfolios which have often been ac-
tive in the past at the same time as a currently active 
portfolio, and portfolios which have recorded condi-
tions in the past at the same time as a currently active 
portfolio. If the currently active portfolio population 
does not result in an accepted behaviour, such indirect 
activations may occur to supplement the available 
information. 

Such indirect activations must be managed to en-
sure their relevance. Indirect activations are therefore 
behaviours which must have adequate recommenda-
tion strengths in the currently active population to be 
accepted.  

When two portfolios are active at the same time, 
they acquire recommendation strengths in favour of 
activating each other. This recommendation strength 
decays with time, but if such activation actually oc-
curs and is followed by positive consequences the 
decay is reversed. Similarly, if two portfolios record 
conditions at the same time, they acquire recommen-
dation strengths in favour of activating each other, 
with the same decay properties. 

Such indirect activation provides a straightfor-
ward model for word interpretation. For example, the 
set of portfolios often detected within visual experi-
ences of different instances of an object category like 
CAT are often active at the same time as the set of 
portfolios often detected within auditory experiences 
of the word “cat”. The auditory portfolios therefore 
acquire recommendation strengths in favour of acti-
vating the corresponding visual portfolios. These vis-
ual portfolios will result in the experience of a visual 
image. The activated portfolios will be those most 
often active when the word has been present at the 
same time as a visual experience, and will therefore be 
an average of such past visual experiences. The port-
folios in arrays closest to sensory inputs will occur 
less consistently in response to different instances of 
any one category, and will therefore not be activated. 
The pseudovisual experience will therefore not be an 
hallucination. 

A portfolio can acquire recommendation strength 
in favour of identifying a particular category. Such 
acquisition may be random or aided by genetically 
defined imitation behaviours [3]. The appropriate vis-
ual portfolios will therefore have recommendation 
strengths in favour of saying the word “cat”. Note that 
any one portfolio may have recommendation strength 
in favour of identifying a number of different catego-
ries, high integrity identifications are only achieved 
across the currently active portfolio population. 

 
5. PHYSIOLOGICAL RESEMBLANCES TO 

THE RECOMMENDATION ARCHITECTURE 
 

As described in detail elsewhere [3; 5] there are a 
number of resemblances between the forms required 
by the recommendation architecture and the physio-



logical structure of the brain. The separation in the 
mammal brain between cortex and various subcortical 
structures including thalamus, basal ganglia and cere-
bellum resembles the recommendation architecture 
separation between clustering and various competitive 
subsystems in a number of ways..  

Clustering must be organized into layers with 
columns extending across several layers and areas 
made up of parallel columns, strongly resembling cor-
tex organization. Devices in clustering must be organ-
ized to detect activity in different groups of inputs 
corresponding with different conditions. The organiza-
tion of pyramidal cortex neurons into different den-
drites, each with a group of inputs, resembles the re-
quired form of clustering devices. 

Portfolios as discussed in this paper would there-
fore be instantiated in cortex columns. 

 
6. MODELLING CATEGORIZATION IN THE 

RECOMMENDATION ARCHITECTURE 
 

Six different types of phenomena related to categori-
zation were discussed in section 3. The first was cate-
gorization on the basis of similarity. The second was 
typicality effects such as faster categorization of more 
typical instances. The third was the influence of re-
cently perceived category instances on categorization 
accuracy. The fourth was rule based categories, the 
fifth ad hoc categories and the sixth theory based cate-
gories. The way in which direct and indirect activation 
of portfolios supports all these phenomena will now 
be described. 

In the case of similarity based categorization, vis-
ual portfolios will be activated in response to the cate-
gory name and in response to the instance. Categoriza-
tion depends upon detection of the degree of overlap 
between the two populations of activated portfolios. A 
typical category member will result in large overlap, a 
non member small overlap, and such categorization 
decisions will be rapid.  

The presence of an activated portfolio in two 
separate populations is itself a condition which could 
be instantiated in a higher level portfolio. Such portfo-
lios would detect overlap and could acquire recom-
mendation weight in favour of saying “yes, the in-
stance belongs to the category”. Such recommendation 
weights could be modified by consequence feedback 
where the consequence feedback derived from a su-
pervisor. 

For moderate overlap a second phase of activation 
is required. If the instance is a member of the category 
but atypical, the overlap will be moderate, but overlap 
may also be moderate for a non member with some 
similarity to the category. However, in the case of an 
atypical category member, many of the portfolios ac-
tivated in response to the atypical member will also 
have been activated in response to other instances of 
the category in the past. Hence if the population of 
portfolios activated in response to the atypical in-
stance is supplemented by portfolios often active in 

the past at the same time, the overlap with the cate-
gory name portfolio population will be significantly 
higher. Indirect activation on the basis of frequent 
simultaneous past activity can therefore provide dis-
crimination between atypical category members and 
accidentally similar non members. The time required 
for the indirect activation accounts for the observed 
typicality effects. 

The influence of recent instances on categoriza-
tion accuracy follows from the fact that the ability of 
two portfolios to activate each other indirectly on the 
basis of simultaneous activity decays with time. In the 
dermatological example, there will be a group of vis-
ual portfolios that tend to be activated in response to 
hearing the name of a particular condition. There will 
be another group of portfolios which was activated in 
response to a recent instance of the condition. The two 
groups were active at the same time and in general 
recorded conditions at the same time because the sub-
jects were told the name of the condition associated 
with the instance. Portfolios in one group will there-
fore have acquired relatively strong recommendation 
strengths in favour of indirect activation of portfolios 
in the other group. If a similar instance is presented, 
the group of portfolios activated will have significant 
overlap with group activated in response to the earlier 
instance. Portfolios in the overlap will have enhanced 
recommendation strength in favour of expanding the 
group with the recently simultaneously active portfo-
lios in the category group. Hence the overlap between 
the expanded group and the category group will be 
increased by the recent similar instance, increasing the 
probability of an accurate categorization. 

Consider now the support for ad hoc categoriza-
tion. The example described was THINGS TO TAKE 
ON A CAMPING TRIP. The mechanism here is that 
the word “camping” and the word for a possible thing 
both activate populations of pseudovisual portfolios. If 
many of the portfolios in one population recorded 
conditions in the past at the same time as portfolios in 
the other population, the categorization is confirmed. 
Alternatively, if a subject is asked to suggest instances 
of the category, portfolios activated by the word 
“camping” can indirectly activate other portfolios 
which recorded conditions in the past at the same 
time. These indirectly activated portfolios will contain 
portfolios directly activated in response to articles 
used while camping, and such portfolios will have 
recommendation strengths in favour of speaking the 
names of the articles. 

In the example of a dolphin with the appearance 
of a fish but the internal structure of a mammal, the 
word “dolphin” will have been present in the past at 
similar times to portfolios activated in response to 
illustrations and discussion of the internal structure of 
dolphins. Many of these portfolios will also have been 
activated at the same time as the word “mammal”. The 
portfolio populations activated by the words “fish” 
and “mammal” will contain portfolios corresponding 
with both visual appearance and internal structure. 



The word “dolphin” will therefore generate a popula-
tion which has significant overlap with both FISH and 
MAMMAL portfolio populations. Category assign-
ment will therefore depend upon the relative weight 
given to overlaps of different types. 

In the case of the triangle with one corner cut off, 
again there are overlaps between the portfolio popula-
tion activated in response to perception of the figure 
and both the population activated in response to the 
word “triangle” and the population activated in re-
sponse to the word “quadrilateral”. The relative 
weight given to the different overlaps will determine 
the categorization selected. 

In the recommendation architecture model, cate-
gory membership is thus defined by the overlap be-
tween the portfolio population activated in response to 
the category name and the population activated in re-
sponse to the instance, with the instance population 
supplemented by portfolios often active in the past at 
the same time as the directly activated instance portfo-
lios, and the category name population sometimes 
supplemented by portfolios which recorded conditions 
in the past at the same time as the directly activated 
category portfolios.  

 
7. CONCLUSIONS 

 
The recommendation architecture is the form into 
which any system which learns a complex combina-
tion of behaviours will be constrained if resources are 
not unlimited. There are strong resemblances between 
the physiology of the brain and the recommendation 
architecture forms. The information storage and access 
mechanisms in a system with the recommendation 
architecture provide a natural account for the complete 
range of observed human categorization phenomena. 
Only one form of information storage is needed to 
support all the categorization phenomena. The differ-
ent phenomena follow from different ways in which 
the same information is accessed in the recommenda-
tion architecture.  
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