
Mathias Berglund, Petri Kyröläinen, Yu Shen
December 9, 2013

Recurrent tweets
Project presentation

2

Agenda

Project background – tweet sentiment classification

Model part 1: Learning word representations

Model part 2: Classification with recurrent neural network

3

Goal to classify whether tweet has positive, negative or
neutral sentiment

“Pretty Little Liars was the shit ! I can't wait til tomorrow ! I
wanna see who all innocent & who got something to do
with Allison dying !”

Positive tweet

“@Duffy_Louise Nooooooo this Sunday is the last episode
of Downton Abbey . :(There's a Christmas special coming
but that's AGES away .”

Negative tweet

“Manchester United will try to return to winning ways when
they face Arsenal in the Premier League at Old Trafford on
Saturday .”

Neutral tweet

Goal to create model for
classifying tweets

• Tweets can have multiple
sentiments

• Model is to classify tweets
into positive, neutral or
negative sentiment

4

We use data from ”SemEval-2013: Sentiment Analysis in
Twitter” with annotated tweets

SemEval-2013 had multiple challenges
• Multiple challenges in SemEval-2013
• Data included Tweets and text messages
• Tasks included message and word

classification

SemEval-2013 workshop co-located with
NAACL

• Organized with “The 2013 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies” in summer of 2013

SemEval-2013 a sentiment analysis
challenge in summer 2013

Twitter data includes 7 485 annotated
tweets

Twitter data set includes 7 463 annotated
tweets

• Hand annotated tweets classified into
“positive”, “negative”, “objective” or “neutral”

• Split into 6 448 training set and 1 017
“development set” (used as test set)

Vocabulary size 23 123

5

Our approach: two-stage training where semantics of tokens
learned in first part, and second part used for classification

Part 1: Map each token (word) to a continuous-
valued vector with semantic meaning

Part 2: Map a stream of words (i.e. a tweet) into
sentiment

”hello”

”I”

”am”

”so”

”glad”

+

-
N

Motivation: Unsupervised training for first part
enables use of unlabeled data

6

Results: We get an average F1-score of 42, which is still
behind state-of-the-art 69 with handcrafted features

Our approach reached an F1-score of 41.75 State-of-the-art reached an F1-score of 69.02

F1: 41.75 F1: 69.02

NRC-Canada SVM

A multitude of hand-crafted features used in
conjunction with SVM classification

Training first step with
large data set still under

development

7

Agenda

Project background – tweet sentiment classification

Model part 1: Learning word representations

Model part 2: Classification with recurrent neural network

8

Mikolov’s Recurrent Neural Network Language Model

Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig. "Linguistic regularities in continuous space word representations." Proceedings of NAACL-HLT. 2013.
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf

I am so

glad am so

Softmax layer
(output)

Hidden layer
(semantic space)

Visible layer
(input)

W W

of neurons in layer

of words in
vocabulary

50-200

of words in
vocabulary

U

V

U

V

U

V

9

Recurrent neural networks in mathematical notation

Computation of input, hidden and output layer activations (forward pass)

Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig. "Linguistic regularities in continuous space word representations." Proceedings of NAACL-HLT. 2013.
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf

10

Weight updates in Backprogation Through Time algorithm
Weight updates (backward pass)

Mikolov, Tomas, ”Statistical Language Models Based on Neural Networks”, PHD thesis. Brno University of Technology, 2012.

Error functions

α = learning rate
β = regularization
parameter

11

Time complexity of RNNLM is fairly high

𝑂 = 𝐸 × 𝑇 × 𝐻 + 1 × 𝐻 × 𝜏 + 𝐻 × 𝑉

E = epochs
T = tokens (or minipatches) in training set
H = hidden neurons
V = size of vocabulary
τ = time steps in back propagation through time algorithm

T. Mikolov et al., ”Extensions of recurrent neural network language model”, In Proceedings of the 2011 IEEE ICASSP, Prague

12

RNN language model with output layer factorized by classes

T. Mikolov et al., ”Extensions of recurrent neural network language model”, In Proceedings of the 2011 IEEE ICASSP, Prague

I

am class

am so glad

so class glad class ! class

We calculate the
probability of a word

GIVEN the class

U

V

U

V

U

V

U

V

Softmax layer
(output)

Hidden layer
(semantic space)

Visible layer
(input)

13

RNN language model with classes in mathematical notation

Conditional probability of word can be factorized

The two factors are computed as

T. Mikolov et al., ”Extensions of recurrent neural network language model”, In Proceedings of the 2011 IEEE ICASSP, Prague

14

Classes reduce time complexity of RNNLM considerably

𝑂 = 𝐸 × 𝑇 × 𝐻 + 1 × 𝐻 × 𝜏 + 𝐻 × 𝑉 Standard

Factorized
by class 𝑂 = 𝐸 × 𝑇 × 𝐻 + 1 × 𝐻 × 𝜏 + 𝐻 × (𝐶 + 𝑉𝐶)

H = hidden neurons
V = size of vocabulary

C = classes
𝑉𝐶 = expected number of word types in the class

T. Mikolov et al., ”Extensions of recurrent neural network language model”, In Proceedings of the 2011 IEEE ICASSP, Prague

15

Preliminary results using RNN language model

Perplexity = average
branching factor

Software: Mikolov, Tomas, Kombrink Stefan, Deoras Anoop, Burget Lukas, and Cernocky Jan. ”RNNLM – Recurrent Neural Network Language Modeling Kit" In: ASRU 2011 Demo Session.

16

Learning reduces perplexity a lot in the word prediction task

RNNLM with hidden layer size
of 200 and 50 classes

Software: Mikolov, Tomas, Kombrink Stefan, Deoras Anoop, Burget Lukas, and Cernocky Jan. ”RNNLM – Recurrent Neural Network Language Modeling Kit" In: ASRU 2011 Demo Session.

17

Agenda

Project background – tweet sentiment classification

Model part 1: Learning word representations

Model part 2: Classification with recurrent neural network

18

In step 2, we train recurrent neural network in supervised
fashion using only the labeled tweets

I am so

Softmax layer
(output)

Tanh layer
(latent)

Visible layer
(input)

+

glad

of neurons in layer

of sentiments
in data

100

200

19

We train the network using stochastic gradient descent and
Nesterov-type momentum

1

2

3

Training details

BPTT with Nesterov momentum
• Network trained with stochastic gradient descent
• Learning rate set with ADADELTA
• Nesterov-type momentum used with mom=0.99

Weights pretrained as a language model

• Pretraining as a regularization tool
• Weights initialized by predicting the next word in

semantic spae

Training for max 100 epochs in minibatches

• Training in minibatches of 10
• Training done for 100 epochs or until early-stop

criterion with error on 20% validation set rising

2

20

Regularization by language model that predicts the next
word, but this time in the semantic space provided by step 1

!

glad I am so

glad am so

Softmax layer
(output)

Tanh layer
(latent)

Visible layer
(input)

2

21

Nesterov-type momentum was shown to improve very deep
network learning considerably

Traditional momentum is “slow” to react

Nesterov-type momentum reacts faster to gradient change

𝑣𝑡+1 = 𝜇𝑣𝑡 − 𝜀𝜀𝑓 𝜃𝑡
𝜃𝑡+1 = 𝜃𝑡 + 𝑣𝑡+1

𝑣𝑡+1 = 𝜇𝑣𝑡 − 𝜀𝜀𝑓 𝜃𝑡 + 𝝁𝒗𝒕
𝜃𝑡+1 = 𝜃𝑡 + 𝑣𝑡+1

Sutskever, Ilya, et al. "On the importance of initialization and momentum in deep learning."

1

22

When evaluating the test set, we insert a tweet, and classify it
based on the largest value in the output layer

This is cool

Prediction based on largest
value in output layer

	Slide Number 1
	Agenda
	Goal to classify whether tweet has positive, negative or neutral sentiment
	We use data from ”SemEval-2013: Sentiment Analysis in Twitter” with annotated tweets
	Our approach: two-stage training where semantics of tokens learned in first part, and second part used for classification
	Results: We get an average F1-score of 42, which is still behind state-of-the-art 69 with handcrafted features
	Agenda
	Mikolov’s Recurrent Neural Network Language Model
	Recurrent neural networks in mathematical notation
	Weight updates in Backprogation Through Time algorithm
	Time complexity of RNNLM is fairly high
	RNN language model with output layer factorized by classes
	RNN language model with classes in mathematical notation
	Classes reduce time complexity of RNNLM considerably
	Preliminary results using RNN language model
	Learning reduces perplexity a lot in the word prediction task
	Agenda
	In step 2, we train recurrent neural network in supervised fashion using only the labeled tweets
	We train the network using stochastic gradient descent and Nesterov-type momentum
	Regularization by language model that predicts the next word, but this time in the semantic space provided by step 1
	Nesterov-type momentum was shown to improve very deep network learning considerably
	When evaluating the test set, we insert a tweet, and classify it based on the largest value in the output layer

