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Goal to classify whether tweet has positive, negative or 
neutral sentiment 

“Pretty Little Liars was the shit ! I can't wait til tomorrow ! I 
wanna see who all innocent & who got something to do 
with Allison dying !” 

Positive tweet 

“@Duffy_Louise Nooooooo this Sunday is the last episode 
of Downton Abbey . :( There's a Christmas special coming 
but that's AGES away .” 

Negative tweet 

“Manchester United will try to return to winning ways when 
they face Arsenal in the Premier League at Old Trafford on 
Saturday .” 

Neutral tweet 

Goal to create model for 
classifying tweets 

• Tweets can have multiple 
sentiments 

• Model is to classify tweets 
into positive, neutral or 
negative sentiment 
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We use data from ”SemEval-2013: Sentiment Analysis in 
Twitter” with annotated tweets 

SemEval-2013 had multiple challenges 
• Multiple challenges in SemEval-2013 
• Data included Tweets and text messages 
• Tasks included message and word 

classification 
 

SemEval-2013 workshop co-located with 
NAACL 

• Organized with “The 2013 Conference of the 
North American Chapter of the Association for 
Computational Linguistics: Human Language 
Technologies” in summer of 2013 
 
 
 

SemEval-2013 a sentiment analysis 
challenge in summer 2013 

Twitter data includes 7 485 annotated 
tweets 

Twitter data set includes 7 463 annotated 
tweets 

• Hand annotated tweets classified into 
“positive”, “negative”, “objective” or “neutral” 

• Split into 6 448 training set and 1 017 
“development set” (used as test set) 

 
Vocabulary size 23 123 
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Our approach: two-stage training where semantics of tokens 
learned in first part, and second part used for classification 

Part 1: Map each token (word) to a continuous-
valued vector with semantic meaning 

Part 2: Map a stream of words (i.e. a tweet) into 
sentiment 

”hello” 

”I” 

”am” 

”so” 

”glad” 

+ 

- 
N 

Motivation: Unsupervised training for first part 
enables use of unlabeled data 
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Results: We get an average F1-score of 42, which is still 
behind state-of-the-art 69 with handcrafted features 

Our approach reached an F1-score of 41.75 State-of-the-art reached an F1-score of 69.02  

F1: 41.75 F1: 69.02 

NRC-Canada SVM 
 

A multitude of hand-crafted features used in 
conjunction with SVM classification 

Training first step with 
large data set still under 

development 
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Mikolov’s Recurrent Neural Network Language Model 

Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig. "Linguistic regularities in continuous space word representations." Proceedings of NAACL-HLT. 2013. 
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf 

I am so 

glad am so 

Softmax layer 
(output) 

Hidden layer 
(semantic space) 

Visible layer 
(input) 

W W 

# of neurons in layer 

# of words in 
vocabulary 

50-200 

# of words in 
vocabulary 

U 

V 

U 

V 

U 

V 
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Recurrent neural networks in mathematical notation 

Computation of input, hidden and output layer activations (forward pass) 

Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig. "Linguistic regularities in continuous space word representations." Proceedings of NAACL-HLT. 2013. 
https://www.aclweb.org/anthology/N/N13/N13-1090.pdf 
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Weight updates in Backprogation Through Time algorithm 
Weight updates (backward pass) 

Mikolov, Tomas, ”Statistical Language Models Based on Neural Networks”, PHD thesis. Brno University of Technology, 2012. 

Error functions 

α = learning rate 
β = regularization 
parameter 
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Time complexity of RNNLM is fairly high 

𝑂 = 𝐸 × 𝑇 × 𝐻 + 1 × 𝐻 × 𝜏 + 𝐻 × 𝑉  

E = epochs 
T = tokens (or minipatches) in training set 
H = hidden neurons 
V = size of vocabulary 
τ = time steps in back propagation through time algorithm 

T. Mikolov et al., ”Extensions of recurrent neural  network language model”,  In Proceedings of the 2011 IEEE ICASSP, Prague 
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RNN language model with output layer factorized by classes 

T. Mikolov et al., ”Extensions of recurrent neural  network language model”,  In Proceedings of the 2011 IEEE ICASSP, Prague 

I 

am class 

am so glad 

so class glad class ! class 

We calculate the 
probability of a word 

GIVEN the class 

U 

V 

U 

V 

U 

V 

U 

V 

Softmax layer 
(output) 

Hidden layer 
(semantic space) 

Visible layer 
(input) 
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RNN language model with classes in mathematical notation 

Conditional probability of word can be factorized  

The two factors are computed as 

T. Mikolov et al., ”Extensions of recurrent neural  network language model”,  In Proceedings of the 2011 IEEE ICASSP, Prague 
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Classes reduce time complexity of RNNLM considerably 

𝑂 = 𝐸 × 𝑇 × 𝐻 + 1 × 𝐻 × 𝜏 + 𝐻 × 𝑉  Standard 

Factorized 
by class 𝑂 = 𝐸 × 𝑇 × 𝐻 + 1 × 𝐻 × 𝜏 + 𝐻 × (𝐶 + 𝑉𝐶)  

H = hidden neurons 
V = size of vocabulary 
 
C = classes 
𝑉𝐶 = expected number of word types in the class 
 

T. Mikolov et al., ”Extensions of recurrent neural  network language model”,  In Proceedings of the 2011 IEEE ICASSP, Prague 
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Preliminary results using RNN language model 

Perplexity = average 
branching factor 

Software: Mikolov, Tomas, Kombrink Stefan, Deoras Anoop, Burget Lukas, and Cernocky Jan. ”RNNLM – Recurrent Neural Network Language Modeling Kit" In: ASRU 2011 Demo Session. 
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Learning reduces perplexity a lot in the word prediction task 

RNNLM with hidden layer size 
of 200 and 50 classes 

Software: Mikolov, Tomas, Kombrink Stefan, Deoras Anoop, Burget Lukas, and Cernocky Jan. ”RNNLM – Recurrent Neural Network Language Modeling Kit" In: ASRU 2011 Demo Session. 
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In step 2, we train recurrent neural network in supervised 
fashion using only the labeled tweets 

I am so 

Softmax layer 
(output) 

Tanh layer 
(latent) 

Visible layer 
(input) 

+ 

glad 

# of neurons in layer 

# of sentiments 
in data 

100 

200 



19 
 

We train the network using stochastic gradient descent and 
Nesterov-type momentum 

1 

2 

3 

Training details 

BPTT with Nesterov momentum 
• Network trained with stochastic gradient descent 
• Learning rate set with ADADELTA 
• Nesterov-type momentum used with mom=0.99 

 
Weights pretrained as a language model 

• Pretraining as a regularization tool 
• Weights initialized by predicting the next word in 

semantic spae 
 
Training for max 100 epochs in minibatches 

• Training in minibatches of 10 
• Training done for 100 epochs or until early-stop 

criterion with error on 20% validation set rising 

2 
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Regularization by language model that predicts the next 
word, but this time in the semantic space provided by step 1 

! 

glad I am so 

glad am so 

Softmax layer 
(output) 

Tanh layer 
(latent) 

Visible layer 
(input) 

2 
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Nesterov-type momentum was shown to improve very deep 
network learning considerably 

Traditional momentum is “slow” to react 

Nesterov-type momentum reacts faster to gradient change 

𝑣𝑡+1 = 𝜇𝑣𝑡 − 𝜀𝜀𝑓 𝜃𝑡  
𝜃𝑡+1 = 𝜃𝑡 + 𝑣𝑡+1 

𝑣𝑡+1 = 𝜇𝑣𝑡 − 𝜀𝜀𝑓 𝜃𝑡 + 𝝁𝒗𝒕  
𝜃𝑡+1 = 𝜃𝑡 + 𝑣𝑡+1 

Sutskever, Ilya, et al. "On the importance of initialization and momentum in deep learning." 

1 
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When evaluating the test set, we insert a tweet, and classify it 
based on the largest value in the output layer 

This is cool 

Prediction based on largest 
value in output layer 


	Slide Number 1
	Agenda
	Goal to classify whether tweet has positive, negative or neutral sentiment
	We use data from ”SemEval-2013: Sentiment Analysis in Twitter” with annotated tweets
	Our approach: two-stage training where semantics of tokens learned in first part, and second part used for classification
	Results: We get an average F1-score of 42, which is still behind state-of-the-art 69 with handcrafted features
	Agenda
	Mikolov’s Recurrent Neural Network Language Model
	Recurrent neural networks in mathematical notation
	Weight updates in Backprogation Through Time algorithm
	Time complexity of RNNLM is fairly high
	RNN language model with output layer factorized by classes
	RNN language model with classes in mathematical notation
	Classes reduce time complexity of RNNLM considerably
	Preliminary results using RNN language model
	Learning reduces perplexity a lot in the word prediction task
	Agenda
	In step 2, we train recurrent neural network in supervised fashion using only the labeled tweets
	We train the network using stochastic gradient descent and Nesterov-type momentum
	Regularization by language model that predicts the next word, but this time in the semantic space provided by step 1
	Nesterov-type momentum was shown to improve very deep network learning considerably
	When evaluating the test set, we insert a tweet, and classify it based on the largest value in the output layer

