
SAT modulo Graphs: Acyclicity

Jussi Rintanen

Department of Information and Computer Science
Aalto University, Finland

(Also affiliated with Griffith University, Brisbane, Australia, and the Helsinki Institute of Information Technology, Finland.)

Joint work with Martin Gebser and Tomi Janhunen

September 2014

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 1 / 16

Motivation for the Work

Acyclicity is required in solutions of several important problems that can
be reduced to the propositional satisfiability problem SAT.

partial-order methods in planning (Rintanen et al. 2006) and bounded
LTL model-checking

well-foundedness of inductive definitions

rule dependencies in answer set programming

Bayesian networks, Markov networks (the structure learning problem)
(Cussens 2008; Corander et al. 2013)

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 2 / 16

More General Motivation

Many graph-related concepts difficult to encode as propositional formulas
(size, efficiency).

Which nodes reachable from the source node?

Which nodes on a simple path between a source node and sink node?

Application in e.g. networked systems’ diagnosis, control, design: telecom,
electricity, water, transport

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 3 / 16

A New Class of SAT Modulo Theories Problems
SAT modulo Graphs (SMG)

standard SAT problem (a set of clauses) +

set of nodes

set of edges/arcs

mapping from edges/arcs (n, n′) to propositional variables an,n′

property satisfied by subgraph consisting of true edges/arcs

In general, the property is identified with a single propositional variable
that may be assigned true or false, but in this work the property is fixed to
true.

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 4 / 16

This Work

We will focus on acyclicity: how to handle SAT+acyclicity efficiently?

space consumption linear in |E|+ |V |
strong propagations

Outperforms other representations of acyclicity in our experiments.

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 5 / 16

Approach

1 Run a SAT solver based on Conflict-Driven Clause Learning (CDCL).
2 When an arc variable is assigned true,

Check whether the graph contains a cycle n1 → n2 → · · · → nm → n1.
If it does,

1 generate a clause ¬an1,n2 ∨ ¬an2,n3 ∨ · · · ∨ ¬anm,n1 ,
2 continue as with any false clause (learn an asserting clause, ...).

Check if there is an almost-cycle n1 → n2 → · · · → nm → n1 with all
arcs true but one anj ,nj+1 . If so,

1 generate a clause c = ¬an1,n2 ∨ ¬an2,n3 ∨ · · · · · · ¬anm,n1 ,
2 add it to the clause database,
3 add ¬anj ,nj+1 to the propagation queue with c as its reason clause, and
4 continue propagation.

Notice that there may be multiple such almost-cycles, each yielding a
different literal.

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 6 / 16

Approach

1 Run a SAT solver based on Conflict-Driven Clause Learning (CDCL).
2 When an arc variable is assigned true,

Check whether the graph contains a cycle n1 → n2 → · · · → nm → n1.
If it does,

1 generate a clause ¬an1,n2 ∨ ¬an2,n3 ∨ · · · ∨ ¬anm,n1 ,
2 continue as with any false clause (learn an asserting clause, ...).

Check if there is an almost-cycle n1 → n2 → · · · → nm → n1 with all
arcs true but one anj ,nj+1 . If so,

1 generate a clause c = ¬an1,n2 ∨ ¬an2,n3 ∨ · · · · · · ¬anm,n1 ,
2 add it to the clause database,
3 add ¬anj ,nj+1 to the propagation queue with c as its reason clause, and
4 continue propagation.

Notice that there may be multiple such almost-cycles, each yielding a
different literal.

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 6 / 16

Approach

1 Run a SAT solver based on Conflict-Driven Clause Learning (CDCL).
2 When an arc variable is assigned true,

Check whether the graph contains a cycle n1 → n2 → · · · → nm → n1.
If it does,

1 generate a clause ¬an1,n2 ∨ ¬an2,n3 ∨ · · · ∨ ¬anm,n1 ,
2 continue as with any false clause (learn an asserting clause, ...).

Check if there is an almost-cycle n1 → n2 → · · · → nm → n1 with all
arcs true but one anj ,nj+1 . If so,

1 generate a clause c = ¬an1,n2 ∨ ¬an2,n3 ∨ · · · · · · ¬anm,n1 ,
2 add it to the clause database,
3 add ¬anj ,nj+1 to the propagation queue with c as its reason clause, and
4 continue propagation.

Notice that there may be multiple such almost-cycles, each yielding a
different literal.

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 6 / 16

The Propagator
Example

Variable corresponding to a→ b is made true.
Perform search forward from b (true arcs only).
Perform search backward from a (true arcs only).
Infer negations of arcs from brown to purple.
...deleting them.

a b

c

de

kl

m

n

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 7 / 16

The Propagator
Example

Variable corresponding to a→ b is made true.
Perform search forward from b (true arcs only).
Perform search backward from a (true arcs only).
Infer negations of arcs from brown to purple.
...deleting them.

a b

c

de

kl

m

n

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 7 / 16

The Propagator
Example

Variable corresponding to a→ b is made true.
Perform search forward from b (true arcs only).
Perform search backward from a (true arcs only).
Infer negations of arcs from brown to purple.
...deleting them.

a b

c

de

kl

m

n

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 7 / 16

The Propagator
Example

Variable corresponding to a→ b is made true.
Perform search forward from b (true arcs only).
Perform search backward from a (true arcs only).
Infer negations of arcs from brown to purple.
...deleting them.

a b

c

de

kl

m

n

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 7 / 16

The Propagator
Example

Variable corresponding to a→ b is made true.
Perform search forward from b (true arcs only).
Perform search backward from a (true arcs only).
Infer negations of arcs from brown to purple.
...deleting them.

a b

c

de

kl

m

n

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 7 / 16

The Propagator
Example

Variable corresponding to a→ b is made true.
Perform search forward from b (true arcs only).
Perform search backward from a (true arcs only).
Infer negations of arcs from brown to purple.
...deleting them.

a b

c

de

kl

m

n

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 7 / 16

Implementation

embedding in MiniSAT and Glucose SAT solvers

a couple of dozens of lines of C++

Propagator run after every decision in CDCL.

Runtime overhead typically ≤ 5 per cent, even for largish graphs
(10000+ nodes).

Integration with CDCL much simpler than with typical SMT theories such
as linear arithmetics.

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 8 / 16

Acyclicity as CNF Constraints

Enumerative encoding

For every n1 → · · · → nm → n1 have clause ¬an1,n2 ∨ · · · ∨ ¬anm,n1 .
Size: O(vv)

Transitive closure

ax,y → tx,y ax,y ∧ ty,z → tx,z ax,y → ¬ty,x
Size: O(ev)

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 9 / 16

Acyclicity as CNF Constraints

Tree reduction

Assign each node inductively the maximum distance of the any of its
children from a leaf. If all distances are finite, there is no cycle.
Size: O(ev)

Topological sort

Every node n ∈ N implies a binary number i(n).
For every arc (n, n′) ∈ A have an,n′ → (i(n) < i(n′).
Size: O(v log v + e log v)

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 10 / 16

Acyclicity as CNF Constraints

Properties: detection of cycles, inferring forbidden arcs

INC
Is inconsistency (a cycle) detected with UP (Unit Propagation)
after all arcs forming a cycle are enabled?

BACK For an enabled path n1, . . . , nk, is arc (nk, n1) disabled by UP?

encoding size propagation

Enumerative O(vv) INC, BACK
Transitive Closure O(ev) INC, BACK
Tree Reduction O(ev) INC
Topological Sort O(v log v + e log v) -

See also our paper in KR’14.

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 11 / 16

Linear inequalities & Difference Logic

Acyclicity can be easily encoded as the < relation of
integers/reals/rationals in SMT with linear real arithmetics and
inequalities.

1 Numeric variable n for every node n.
2 For each arc variable an,n′ we have formula an,n′ → (n < n′).

Some SMT solvers solve sets of simple inequalities like the above by
graph-based algorithms, potentially detecting acyclicity efficiently and
inferring forbidden arcs.

However, in practice they are clearly outperformed by our
SAT+acyclicity solver.

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 12 / 16

Runtime Comparison

Problem Size G
lu

co
se

-I
N

C

G
lu

co
se

-B
A

C
K

M
in

iS
A

T
-I

N
C

M
in

iS
A

T
-B

A
C

K

G
lu

co
se

-S
A

T

M
in

iS
A

T
-S

A
T

L
in

g
el

in
g

-S
A

T

C
la

sp
-S

A
T

C
la

sp
-A

S
P

Z
3

-S
M

T

Hamilton
100 0.21 0.07 0.03 0.04 224.14 275.00 2419.63 2600.90 0.95 2.45
150 0.13 0.15 0.10 0.12 3440.00 3172.54 3536.02 — 20.16 50.64

Acyclic

25 0.08 0.05 0.05 0.03 2406.60 2934.30 1.61 1282.49 0.12 0.29
50 2.34 0.28 1.64 0.29 3147.91 2988.30 17.09 — 0.76 7.61
75 682.86 8.09 856.47 4.76 3241.00 3276.92 99.60 — 282.01 167.74

100 2180.98 964.28 2172.01 647.13 3170.48 3176.70 2760.52 1984.10 831.33 2278.63

Forest

25 0.59 0.64 0.75 0.72 118.70 139.88 3.10 3.59 4.09 4.54
50 301.46 304.44 466.56 498.00 1165.53 1438.49 667.24 1125.86 1039.26 1205.63
75 909.15 1006.73 1011.05 920.43 2597.99 2708.27 1019.68 1470.12 1501.76 1755.28

100 1349.29 1418.25 1271.86 1269.47 2882.20 2853.03 2131.73 2597.71 1632.94 2690.67

Tree

25 0.80 0.74 0.67 0.83 72.93 6.12 3.17 4.12 4.37 4.75
50 301.81 315.83 564.05 544.43 815.09 1230.09 685.38 1126.76 1193.09 1208.36
75 947.61 999.07 976.40 1025.02 2646.64 2749.26 1044.51 1633.95 1495.32 1726.56

100 1348.91 1414.68 1330.81 1224.28 2882.36 2861.33 2239.12 2621.82 1995.19 2538.20

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 13 / 16

Explaining Performance of SMT / Difference Logic Solvers

 1000

 10000

 100000

 1e+06

 1e+07

 1000 10000 100000 1e+06 1e+07

Z
3

Glucose-INC

Number of decisions

 1000

 10000

 100000

 1e+06

 1e+07

 1000 10000 100000 1e+06 1e+07

Z
3

Glucose-BACK

Number of decisions

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 14 / 16

Other Graph Properties

Graph properties important in many applications:

s-t-reachability: node t reachable from s (directed, undirected)
simple paths: a node is on a simple path between s and t
cycles: acyclicity, cyclicity
chordality: graph consists of triangles

Devising efficient (linear-time) propagators often a challenge. (
Explains why compact and efficient CNF-encodings hard to come by.)

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 15 / 16

Conclusion

Proposed a framework SAT modulo Graphs.

Presented efficient and simple implementation of SAT + Acyclicity.

Future work: implementation MAXSAT modulo Graphs

Future work: other graph properties

Future work: applications SAT + Graphs

Remaining performance differences to ASP solvers such as Clasp?

Jussi Rintanen (Aalto U, Dept of ICS) SAT modulo Graphs: Acyclicity JELIA 2014 16 / 16

