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Detecting Man-Made Structures and Changes in
Satellite Imagery With a Content-Based Information
Retrieval System Built on Self-Organizing Maps
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Abstract—The increasing amount and resolution of satellite
sensors demand new techniques for browsing remote sensing im-
age archives. Content-based querying allows an efficient retrieval
of images based on the information they contain, rather than
their acquisition date or geographical extent. Self-organizing maps
(SOMs) have been successfully applied in the PicSOM system to
content-based image retrieval in databases of conventional images.
In this paper, we investigate and extend the potential of PicSOM
for the analysis of remote sensing data. We propose methods for
detecting man-made structures, as well as supervised and unsu-
pervised change detection, based on the same framework. In this
paper, a database was artificially created by splitting each satellite
image to be analyzed into small images. After training the PicSOM
on this imagelet database, both interactive and off-line queries
were made to detect man-made structures, as well as changes
between two very high resolution images from different years.
Experimental results were both evaluated quantitatively and dis-
cussed qualitatively, and suggest that this new approach is suit-
able for analyzing very high resolution optical satellite imagery.
Possible applications of this work include interactive detection of
man-made structures or supervised monitoring of sensitive sites.

Index Terms—Change detection, content-based information re-
trieval, high-resolution optical satellite images, man-made struc-
ture detection, self-organizing maps (SOMs).

1. INTRODUCTION

ARTH observation (EO) data volumes are growing

rapidly, with an increase in both the number of satellite
sensors and in their resolutions. Yet, it is estimated that only
5% of all EO data collected up to now have been used.
Therefore, traditional remote sensing archiving systems—with
queries made typically on sensor type, geographical extents, or
acquisition date—could become obsolete as the amount of data
to be stored, accessed, and processed explodes. Using image
content would allow a more efficient use of these databases.
This has led to the emergence of content-based image retrieval
(CBIR) systems for archive management of remote sensing
images [1]-[9], and for annotation or interpretation of satellite
images [1], [9]-[11].
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Previous work has been made on databases of relatively small
images acquired from medium-resolution sensors. A visually
oriented query method was experimented in [3] on a small
test image archive, containing 484 windows extracted from
Landsat Thematic Mapper (TM) images. An intuitive method
for semantic labeling of images, suited for query by image
content, was described in [4] and tested on the same image
archive. A stochastic representation of image content was used
in [6] and [11] for interactive learning within a database of
about a thousand 1024 x 1024 Landsat TM scenes—however,
queries were made by marking the training areas.

A recent work [12] combining support vector machines
(SVMs) with active relevance feedback was successfully tested
on a database of 3600 small satellite images with ground
truth for six classes. But, the database was built manually, and
class labels reflected the majority content of each small image.
Relevant feature selection for satellite image indexing was
discussed in [13], on a similar database of 600 small extracts
of SPOTS images (64 x 64 pixels). A rigorous framework for
remote sensing image information mining has been presented
in [8], integrating spectral information (through land cover
and land use identified by the SVM classification) and spatial
information (Gabor wavelet coefficients as a textural feature).
Performance evaluation was run on a database of 128 X
128 pixels extracts of Landsat TM images, with promising
results. Other works [2], [5], [7] seemed to focus more on
managing large databases of full remote sensing scenes.

Very few works describe the utilization of CBIR techniques
for the purpose of a single satellite scene interpretation, let
alone change detection. Techniques inspired from knowledge
discovery in database were however used in [14] for segmenting
images of natural scenes. A method for multisource remote
sensing data fusion with multiple self-organizing maps (SOMs)
[15] has been introduced in [16]. Spectral, geographical, tem-
poral, and spatial features were merged in a data vector. But,
the SOMs were used in [16] for classification not for informa-
tion retrieval from the remote sensing image archives nor for
detection of changes.

Change detection in remote sensing imagery is involved in an
ever-growing number of applications, allowing to monitor the
impact of natural disasters (e.g., floods [17], earthquakes [18]),
forest changes [19], or even compliance to nuclear nonprolifer-
ation treaties [20]. Classical change detection techniques rely,
for example, on image difference or ratio, postclassification
comparison, classification of multitemporal datasets, or change
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vector analysis [21]. Pixel-based methods require a subpixel
registration accuracy, as misregistrations greater than one pixel
produce numerous errors when comparing images [21].

We present an original utilization and improvement of a
CBIR system, PicSOM, for the analysis of remote sensing
images. In the PicSOM image database browsing system [22],
several thousands of images are mapped on SOMs through the
extraction of image descriptors, including textural and color
features. After the SOMs are trained, the user can visually query
the database, and the system automatically finds images similar
to those selected. This approach has been successfully applied
to databases of conventional images [23], [24]. We aim at
using the potential of this neurally motivated CBIR system for
detecting man-made structures or changes between two or more
satellite images, with a special interest in the changes involving
human activity (e.g., buildings, structures). The approach pre-
sented in this paper could be applied to various types of sen-
sors, even to synthetic aperture radar (SAR) with appropriate
feature descriptors. In this paper, we focused on very high reso-
lution optical images, as the change detection is challenging in
such imagery—due to the high level of details in the images,
and sensitivity to illumination conditions or misregistration
effects.

The key idea of this paper is to artificially create an “image
database” from each satellite image to be analyzed, by clipping
it into thousands of small images or imagelets. PicSOM can
be trained on that virtual database, then visually queried for
finding objects of interest like man-made structures. Previous
work [25] showed promising results on very high resolution
satellite images, even with features that had been developed for
generic images, and did not take into account the spectral or
spatial properties of the EO data.

In this paper, we extended the PicSOM system so that it
handles multispectral imagery and includes features adapted
to the detection of man-made structures in high resolution
optical satellite images. Fusion of panchromatic and multi-
spectral information was done naturally within the PicSOM,
in which several SOMs are trained in parallel (one SOM per
feature). Qualitative and quantitative evaluations of the methods
were carried out for man-made structure detection and change
detection, using partially labeled datasets. Possible applications
of this work are high resolution satellite image annotation or
monitoring of sensitive areas for undeclared human activity,
both in an interactive way.

This paper is organized as follows. The next section explains
how we built a database from one or two satellite images.
The SOM and PicSOM are introduced in Section III, and the
features extracted for the study are introduced in Section IV.
Section V explains the use of PicSOM for retrieving man-
made structures and detecting changes. Experimental results
are presented in Section VI and discussed in Section VII.
Conclusions and future work are given in Section VIII.

II. DATABASE PREPARATION

CBIR is a technique for finding relevant images in a database.
We present here how we created a database of images from one
or two satellite images.

Fig. 1.

True-color pan-sharpened 2005 QuickBird study scene.

A. Satellite Imagery

Two QuickBird scenes were acquired in the beginning of
September 2002 and in the middle of June 2005, covering the
same coastal area in Finland. They include four multispectral
channels with a 2.4-m ground resolution—blue (450-520 nm),
green (520-600 nm), red (630-690 nm), and near-infrared
(NIR) (760-900 nm), and a panchromatic channel (450-
900 nm) with a ground resolution of 0.6 m. Both scenes were
remarkably cloud free and were coregistered from one to an-
other. Slight misregistration effects remained due to a lack of
digital elevation model of the monitored area.

Panchromatic and multispectral images were kept as separate
data sources for later feature extraction. For the sole purpose of
displaying the images in the PicSOM, a fusion of panchromatic
and multispectral images was done by pan sharpening—no
feature was calculated on the pan-sharpened images. Pan sharp-
ening was also used to visually check the correct registration
between multispectral and panchromatic channels. The same
study area of size about 4 x 4 km, as shown in Fig. 1, was
extracted from both scenes.

B. Database Generation

An image retrieval system, such as PicSOM, typically re-
quires several thousands of images in a database in order to pro-
duce a relevant indexing. We artificially created databases from
the two study scenes to be analyzed. Each scene was cut into
71 x 71 = 5041 nonoverlapping small images or imagelets, of
size 100 x 100 pixels for panchromatic data and 25 x 25 pixels
for multispectral data.

By this operation, we expected to reduce the amount of
contents in each image. The study scene in Fig. 1 is a rich
detailed image with lots of target classes (water, forest, arable
land, built-up areas, etc.). On the contrary, imagelets, as shown
in Fig. 2, usually contain only two or three distinct target
classes. The pan-sharpened images were cut in the same manner
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forest
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Fig. 2. Samples of imagelets automatically extracted from 2005 study area.

(into 100 x 100 pixels imagelets) to be included in the PicSOM
for visualization.

In this paper, imagelets were named in such a way that it
tells their location within the study area—row and column of
the original image—and year of acquisition. A triplet (row,
column, and acquisition date) designated unambiguously an
imagelet, regardless of the data type it had been extracted
from. We denote by database the reunion of imagelets com-
ing from panchromatic, multispectral, and pan-sharpened data
sources for a given geographical extent—here, the study scene.
Each acquisition date generate a subdatabase of the parent
database. Given a row and column index, the corresponding two
imagelets of the 2002 and 2005 subdatabases covered the same
geographical extents within the coregistration accuracy.

C. Creating Ground Truth for Method Evaluation

The 2002 study area was labeled into seven classes—
{agricultural field, arable land, buildings, clearcuts, forest,
roads, and water}. Because the classification of very high spa-
tial resolution images is challenging, it was highly assisted by a
visual inspection. Water and forest classes were automatically
labeled with the AutoChange software [26], developed at VTT.
Designed for automatic change detection between two images,
it can be used for classifying a single image, as it relies on
a modified version of k-means clustering [26]. Other classes
were obtained by a maximum-likelihood classification after
visually marking the training areas. Small buildings and narrow
roads were not retrieved correctly by the maximum-likelihood
classification. Man-made structures being the main target of
this paper, all buildings and roads were manually delineated
in the pan-sharpened image by a visual inspection. Aiming
at detecting appearing or disappearing constructions, buildings

were also manually delineated in the 2005 imagelets along the
same process.

The full-size classification layer was cut as were the satellite
images. Multiple labels were then assigned to each imagelet,
depending on the classes they contained. The lists of imagelets
containing pixels of each class were built and saved as seven
text files handled by the PicSOM. The labels were used in
the PicSOM to ease querying or selecting imagelets of interest
during system development and testing. It also allowed a quan-
titative evaluation of the methods as described in Section VI.

III. SOMs FOR CBIR

In this section, we describe the principle of the PicSOM
content-based retrieval and browsing system based on SOMs.
PicSOM has been developed as a framework for studies on
content-based information retrieval, and it has been applied in
divergent domains of both visual and nonvisual data. A central
design principle of the system has been its good scalability to
large database sizes by efficient off-line indexing of the objects.
A demonstration version of the PicSOM is displayed in [22].

A. SOMs

The SOM [15] is a neurally motivated unsupervised learning
technique which has been used in many data-analysis tasks.
A genuine feature of the SOM is its ability to form a nonlinear
mapping of a high-dimensional input space to a typically 2-D
grid of artificial neural units. During the training phase of a
SOM, the model vectors in its neurons get values which form
a topographic or topology-preserving mapping. Through this
mapping, the vectors that reside near each other in the input
space are mapped into the nearby map units in the SOM grid.
Patterns that are mutually similar with respect to the given
feature extraction scheme are thus located near each other on
the SOM surface.

The training of a SOM starts from the situation where the
model vectors m; of each map unit ¢ are initialized with
random values. For each input feature vector or sample x(t),
the “winner” or the best matching map unit (BMU) ¢(x) is
identified on the map by the condition

Vie o ||x(8) = meeo ()] < lIx(t) —mi@)] D)
where || - || is commonly the Euclidean norm. After finding the
BMU, a subset of the model vectors constituting a neighbor-
hood that centered around node ¢(x) is updated as

m;(t) + h (£ ¢(x), ) (x(t) —

Here, h(t; ¢(x),1) is the “neighborhood function,” a decreasing
function of the distance between the ith and ¢(x)th nodes on the
map grid. The training is reiterated over the available samples,
and the value of h(t; ¢(x),4) is allowed to decrease in time to
guarantee the convergence of the prototype vectors m;. Large
values of the neighborhood function h(¢; ¢(x), %) in the begin-
ning of the training initialize the network, and small values
on later iterations are needed in fine-tuning. The outcome of

m(t+1) = m,(t)).  (2)
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feature vectors of images model vectors of SOM units

\ T

The SOM unit is visually labelled
with the image whose feature vector
is nearest to the model vector

tesselation borders

Fig. 3. Visualization of the distributions of the feature vectors of images
(crosses) and the SOM model vectors (circles) in a 2-D space.

training a SOM is essentially the topographic ordering of the
training data samples on the surface of the map grid.

B. PicSOM System

The PicSOM system [22] used in this paper has originally
been developed for CBIR research [23], [24], [27]. It im-
plements two essential CBIR techniques, query by examples
(QBE) and relevance feedback. These methods can be used for
iterative retrieval of any type of visual or nonvisual content.
In iterative QBE, the system presents in a visual interface
some images or other objects to the user, who then marks a
subset of them as relevant to the present query. This relevance
information is fed back to the system, which then tries to find
more similar objects and returns them in the next query round.
In Section V, we show how the same technique can also be
applied in the semiautomated interactive analysis of satellite
images—for example, detecting man-made structures.

In PicSOM, multiple SOMs are used in parallel, each cre-
ated with different low-level visual features. Each imagelet is
therefore used multiple times as input to the different feature
extraction techniques, and the resulting feature vectors are used
in training different SOMs. When an image SOM has been
trained, all the feature vectors x are once more mapped to it,
each one in its BMU. Every SOM unit and its model vector m
is then assigned a visual label from the imagelet whose feature
vector was the nearest to the model vector. Fig. 3 demonstrates
how the feature vectors, BMUs, and visual labels can situate
in an imagined 2-D feature space. The tessellation regions
determine which imagelets will be represented by each SOM
unit in the index defined by that specific feature extraction
scheme.

The different feature extraction schemes and the SOMs that
result from the training impose different similarity functions on
the images. As a consequence, two imagelets whose contents
are similar to each other with respect to some feature will
be mapped to nearby units on that SOM’s surface, whereas
they will be located far apart on another feature’s SOM if
that feature regards them as dissimilar. Every interactive image
query is unique, and each user of a CBIR system has his or

IMAGELET DATABASE

' ¢ !

|feature #1 | |feature #2| -------- |feature #Nl
1

I |
feature-wise qualification values in SOM units

\d \d
L— [ — L
SUBSETS OF MOST RELEVANT IMAGES

T T 7T

final qualification value
for each imagelet

SHOWN IMAGELETS

Fig. 4. Principle of PicSOM. Features are extracted from a database of images
(imagelets in our case). Subsets of most relevant imagelets for a given feature
are formed according to the featurewise qualification values in SOM units.
Those subsets are then combined to select the images to be shown.

her own transient view of images’ similarity and relevance to
the specific query. Therefore, a system structure capable of
holding many simultaneous similarity representations can adapt
to different kinds of retrieval tasks. Also, the studies made by
other researchers showed that joint multiple SOMs have a better
discrimination capability than a single SOM [16].

Relevance feedback has been implemented in the PicSOM
by using the parallel SOMs. Each image presented in the
interactive on-line use of the system is graded by the user as
either relevant or nonrelevant. All these relevance grades are
then projected to the best matching SOM units of the graded
images on all the different SOM surfaces. Maps where many
relevant images are mapped in the same or nearby SOM units
agree well with the user’s conception on the relevance and
semantic similarity of the images. When we assume that similar
images are located near each other on the SOM surfaces, we
are motivated to spread the relevance information placed in the
SOM units also to the neighboring units.

This relevance spreading is implemented in the PicSOM as
follows. All images marked as relevant are first given an equal
positive value that is inversely proportional to their number.
Likewise, the nonrelevant images receive negative values that
are inversely proportional to the number of nonrelevant images.
The overall sum of these relevance values is thus zero. The
values are then summed in the BMUs of the images, and the
resulting sparse value fields are low-pass filtered to produce
the final score or qualification value for each SOM unit.

As the final step, each image is given a total qualification
value that is obtained as a sum of the qualification values from
its best matching or index units from the SOM surfaces of the
different features. Those yet unseen images, which have the
highest qualification values, will then be shown to the user on
the next query round (Fig. 4). In the PicSOM, features that fail
to coincide with the user’s conceptions always produce lower
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qualification values than those descriptors that match the user’s
expectations. As a consequence, the different features do not
need to be explicitly weighted as the system automatically takes
care of weighting their opinions.

Qualification values can similarly be calculated off-line for
different semantic content classes, if such have been defined
for the database. Suppose that all images in a specific ground
truth class are marked as relevant, with a positive value in
their respective BMUs on the different SOMs. After a low-
pass filtering, we then obtain class distributions on the SOM
surfaces, as can be seen in Fig. 7. The better a feature is in
mapping the semantic class in a dense region, the sharper the
resulting distribution on the SOM surface will be.

IV. FEATURES

Feature extraction and selection is a central task in any CBIR
system. The features are usually low level, and describe general
properties of the images, like color distribution, texture, or
shapes. In [12], weighted color histograms, Hough transform
as a shape descriptor, and textural information based on the
Fourier transform were used as features. In [13], features
like Haralick descriptors, Gabor features, and Gauss—Markov
random fields parameters were included, as well as geometric
features resulting from a local statistical analysis of the edges
contained in images.

In this paper, we used six low-level features automatically
extracted from the imagelets. Some were part of the PicSOM;
three were added in this paper for the specific purpose of detect-
ing man-made structures or changes in the satellite imagery.

A. Features Included in the Standard PicSOM

The PicSOM system was originally developed for databases
of conventional images (those found, for example, in common
web image databases). Generic and low-level image features
are integrated within the PicSOM system. We use here the term
imagelet to equivalently describe any data source (panchro-
matic or multispectral) covering the geographical extent of that
imagelet. The features were the following.

1) Average red, green, and blue (RGB). This 3-D feature was
calculated as the average values of the RGB channels of
the pixels in an imagelet.

2) Color moments. The RGB color coordinates of the pixels
were first transformed to the hue-saturation-value (HSV)
coordinate system. Then, the three first moments (mean,
variance, and skewness) of the HSV values were calcu-
lated and stored in a 9-D feature.

3) Texture. This feature was formed by studying the eight-
neighbors of each imagelet pixel. For each eight-neighbor
of a given pixel, a counter was incremented when the
illumination in that neighbor was larger than in the center
pixel. When all the imagelet pixels had been scanned, the
final counts were divided by the total number of pixels in
the imagelet. The resulting 8-D feature vector describes
the local illumination differences and, thus, the small-
scale texture of the imagelet.

TABLE 1
FEATURES EXTRACTED FROM THE IMAGELETS

Feature Data source Dimensionality
average RGB Multispectral (RGB only) 3
color moments Multispectral (RGB only) 9
texture Panchromatic 8
xy-coordinates Index of the imagelet 2
NDVT histogram | Multispectral (Red and NIR) 100
edges histogram Panchromatic 180

In a preliminary work [25], the above three low-level image
features were extracted from the pan-sharpened RGB imagery.
Pan sharpening was used in an attempt to keep the spatial and
spectral information in the same data source. In addition, the
radiometry had been reduced from 11 to 8 bits, so that the
images could be displayed in the PicSOM interface. Despite
the extraction of features from the pan-sharpened and radio-
metrically reduced images, the results were encouraging.

In this paper, the full 11-bit radiometry was conserved and
the data sources were kept separated. Pan sharpening was still
used to display imagelets in the PicSOM, but strictly not for any
feature extraction. Those generic features were extracted on the
most relevant input data source (see Table I).

B. Additional Features for Satellite Imagery

Other features can as well be calculated in another envi-
ronment then loaded into the PicSOM as plain text files. In
order to help retrieving the man-made structures and detecting
the changes in satellite imagery, three additional features were
included.

1) zy coordinates. This feature used the spatial location of
the imagelet in the original scene as a 2-D feature (row
and column indexes). As the images from the two years
were coregistered, the value of this feature was always
the same for any imagelet position, regardless of the year,
image content, or data source.

2) NDVI histogram. The normalized difference vegetation
index, or

NDVI — NIR — Red 3)
" NIR + Red

in which NIR means the NIR spectral wavelength and
Red means the visible red light, is a widely used feature
in remote sensing to characterize the amount of green
vegetation. The bare soil gives low NDVI values, whereas
the values of green vegetation are high. In land surfaces,
the index value is usually positive. The NDVI has also a
good correlation with the green biomass at low biomass
levels, but it saturates when the bare soil fraction is close
to 0%.

In this paper, the NDVI was utilized to separate the
vegetated surfaces from the nonvegetated, such as build-
ings and roads. Imagelets are likely to have often hetero-
geneous content; thus, the mean or standard deviation of
NDVI on the imagelets would not effectively character-
ize them. Therefore, an NDVI histogram was computed
on imagelets, with 100 bins ranging from minimum to
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maximum NDVI values of the uncut study scene. His-
tograms of different imagelets could easily be compared,
since the bin positions were independent of imagelets.
Negative values of NDVI, usually associated to water or
deep shadows, were left unchanged because the study
scene contains a significant proportion of water areas, that
were part of the zone to monitor. The allure of NDVI
histograms was hypothesized to help in discriminating
imagelets containing, e.g., buildings from the completely
vegetated imagelets. The counts of the NDVI histogram
constituted a 100-D feature vector.

3) Edges histogram. It was forecasted in [28] that, in addi-
tion to spectral features, structural features (like edges or
shapes) would be suited to the CBIR in high-resolution
satellite images. Pattern directionality [29] has been used
in automatic video indexing [30], and recently in systems
to manage EO image archives [31]. It is based on the his-
togram of a local gradient magnitude against directional
angle. We used a slightly modified version of that feature.

Let I be an imagelet, and S, and S, as the 3 x 3 Sobel
operators extracting vertical and horizontal edges. Noting
by * the convolution operation, the imagelet gradient
magnitude |G| and angle 6 are defined at each pixel by

|G|l =/G2+G2, with G, =1%S, and G, =I%S,
“)

1[Gy ™
f = tan <G1>—|—2, 0elo,n]. (5)

The angle 6 is counted counterclockwise and equals O
when the gradient G is in the horizontal direction. In [30],
a histogram is obtained by quantizing # and counting how
many pixels have a gradient magnitude ||G|| higher than
a noncritical threshold.

Because shadows or details can generate in very high
resolution satellite images strong edges that do not corre-
spond to structures, we avoided choosing a threshold in
this paper. Instead, for each angle, the histogram count
was weighted by the mean of the two extremal gradient
magnitudes (minimum and maximum values). Typically,
simple buildings are rectangular, with corresponding
edges appearing in directions 6y (direction of the edge
with the strongest magnitude) and 6y + (7/2)mod .
The histogram was then centered around 6 by a circular
shifting. After conversion to degrees, the result was a
histogram of gradient magnitude between angles —90°
and +-89°, normalized in angular position. If an imagelet
contains a rectangular building, the histogram should
show a primary peak in the central position and secondary
peaks at both ends. Imagelets containing only forest
should show a flat, close to a uniform histogram—no
direction of the gradient would be clearly dominating.

Fig. 5 shows sample imagelets from the 2002 image, with
their NDVI and edges histograms. A single building (first
imagelet) generates enough gradient magnitude to leave a sig-
nature at the center of the edges histogram and two secondary
lobes in the outermost parts. The NDVI histogram shows high
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Fig. 5. Three sample imagelets from 2002 representative of classes building,

forest, field, and their features.

values for vegetation and values closer to zero for the building.
The NDVI histogram of the second imagelet, containing forest
only, does not include as low NDVI values as the first imagelet
with the building. Also, the NDVI histogram is symmetrical
around the modal value, whereas the edges histogram is rather
uniform and reveals no man-made structure in the imagelet. The
third imagelet has a clear bimodal NDVI histogram because it
contains forest and a ploughed field with bare soil in approxi-
mately equal proportions. The edges histogram does not show
any clear structure here either.

C. Feature Extraction and SOM Training

Spectral information was extracted from the multispec-
tral imagery: Average RGB and color moment features were
calculated discarding the NIR channel, whereas the NDVI
histogram feature was computed using red and NIR bands.
Textural and spatial features (edges histogram and texture fea-
ture, respectively) were extracted from the higher spatial resolu-
tion panchromatic data. Table I sums up features dimensionality
and the data source they were extracted from.

The map sizes were set to 64 x 64 units for the five
visual features SOMs, and 71 x 71 for the coordinate SOM.
There were, therefore, on average, 5041/4096 ~ 1.23 imagelets
mapped in each unit of the visual SOMs and exactly one
image per unit on the coordinate map. Each feature vector was
used 100 times in training the SOM according to (1) and (2).
Fig. 6 illustrates the visual labels, i.e., the most representative
imagelets, on a SOM calculated for the textural feature. It is
interesting to notice that water regions were mapped into two
separate areas. This was because the sea was calm in 2002 (on
the left of the map), but quite wavy in 2005 (in the top-right
corner of the map): images of calm and wavy water areas have
rather different textural properties.

The distributions of the ground truth classes on the six
different feature SOMs are shown in Fig. 7. The more localized
the distributions of feature vectors are on the map, the better it
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Fig. 6. Organization of imagelets by their texture on a 16 x 16 SOM surface.

is for detection. In that sense, color moment and edges features
seem to be good candidates for building detection.

V. USING PICSOM FOR DETECTING MAN-MADE
STRUCTURES AND CHANGES

The PicSOM system was originally developed for brows-
ing databases of images. We explain here how we used and
extended the PicSOM for detecting man-made structures, or
changes—both in supervised and unsupervised manners.

A. Interactive Detection of Man-Made Structures With CBIR

CBIR techniques have already been used for the remote
sensing image archive management. In [12], the user is asked
to label several pictures as relevant or nonrelevant at each query
round. A study reported in [31] also includes query by pictorial
examples.

In this paper, we have used the PicSOM CBIR system to
interactively find imagelets containing man-made objects such
as buildings or roads. The system first displays a random
selection of imagelets in a web browser. The user then selects all
imagelets containing man-made objects—or anything else but
water and forest—and sends this information back to the system
by pressing the “Continue query” button. In the forthcoming
query rounds, the user can then focus the query with their se-
lections more precisely to more specific semantic targets, such
as buildings, roads, or clearcuts. Fig. 8 shows the user interface
of the system in the middle of an interactive query session. The
user has selected some man-made objects shown in the middle
of the browser window. On the top part, the distribution of those
imagelets is shown on the six different SOMs. In the bottom of
the interface, some of the new imagelets returned by the system
are shown to the user.

B. Automated Detection of Man-Made Structures

As described in the end of Section III-B, models for semantic
imagelet classes, such as buildings or other man-made struc-
tures, can be created with different features from the ground-
truth-labeled training data. Imagelets from different areas or
different acquisition dates can then be classified by the system
to detect the presence of similar structures. In order to achieve
this, the qualification value assigned to each imagelet by the
PicSOM system is simply interpreted as a discrimination value,
which indicates the likeliness that the specific imagelet belongs
to that semantic class.

After calculating the discrimination value, the PicSOM will
also order the test data by their qualification values in the
decreasing order of similarity to the class model. If one, in-
stead of the ordered list, desires the system to give a decisive
output for each imagelet (either belonging or not to the studied
semantic class), a threshold value has to be selected. Standard
pattern classification techniques for selecting the threshold and
evaluating the performance of the classification system can
then be used in assessing and tuning the detection accuracy.
Such techniques include, e.g., receiver operating characteristic
(ROC) curves [32] and recall-precision graphs.

One may note that the above-described detection procedure
is analogous to the interactive CBIR operation, in the sense
that the labeled training data have now replaced the imagelets
graded by the user as relevant. Similarly, the test data are in the
role of the yet unseen database images.

C. Supervised Content-Based Change Detection

We outlined above how the PicSOM system can be used to
create a multifeatural discrimination model for a semantic class
of imagelets. If the model is applied to a pair of imagelets,
both depicting the same geographical location, but acquired at
different dates, one can perform the change detection.

Assuming that the system produces larger discrimination
values for imagelets that portray man-made structures than
those that do not, then a temporal increase in this value indicates
that a new man-made structure has probably appeared. Vice
versa, if the discrimination value decreases between the two
acquisition dates, then it is likely that a building or other
nonnatural structure has disappeared.

Again, all the imagelet pairs can be sorted by a decreasing
order of change in this discrimination value. In that ordering,
the first imagelets are those that most probably depict areas
where a new building or other structure has appeared. By
selecting a proper threshold value or taking a preset number of
the top-ranked imagelets, one can check if new structures really
have appeared. Fig. 9 presents our change detection approach
based on SOMs. The basic framework—decomposition into
imagelets, feature extraction, and mapping on the SOM—is
common to a content-based supervised and unsupervised de-
tection of man-made structures or changes.

It must be noted that this kind of change detection is
supervised, in the sense that one needs to have labeled the
training data in order to create the class models. The models
can be used for change detection in the data temporally and
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Fig. 7. Distributions of the ground truth classes on the different feature SOMs. Darker shades present areas of denser distribution.

geographically independent from the training data, as long as
the training samples from that semantic class still match the
analyzed imagelets accurately enough. Therefore, the models
created for detecting buildings in Northern Europe might not
be applicable, for example, to Mediterranean regions.

D. Unsupervised Content-Based Change Detection

We also devised an unsupervised method for finding
pairs of imagelets—one from year 2002 and the other from
2005—which differed the most in the sense of some of the
extracted features. The dissimilarity between imagelets was
again defined solely on the SOMs. This means that we did not
calculate any pixelwise differences between the imagelets, but

defined the changes relatively to a particular feature extraction
scheme. In this manner, the change detection is less dependent
on small variations in the absolute image coordinates due to
inaccurate coregistration.

Some variations in the imagelets are due to various forms
of noise (e.g., varying illumination conditions, overlapping
shadows), and do not correspond to true changes in the land
cover. We assumed that the differences caused by a noise lead
to situations where the BMU for the calculated feature vector
remained the same, or was moved to a neighboring SOM unit.
Only true changes in the imagelet’s content should then give
rise to such a substantial change in the feature vector’s value,
that its projection on the SOM surface would be moved to a
significantly different location. The substantiality of the change
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Fig. 8. Part of the web user interface of the PicSOM system in an interactive
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can therefore be measured as the distance on a SOM between
the BMUs of the imagelet’s feature vectors from different years.

The proposed unsupervised change detection technique was
as follows. For each imagelet pair from years 2002 and
2005—excluding the water areas—we solved the two BMUs on
one particular feature’s SOM. The Euclidean distances between
the BMUs were then calculated, and the imagelet pairs ordered
by descending pairwise BMU distance. A number of imagelet
pairs were then regarded as the locations where the most
substantial changes had taken place.

The same procedure can be repeated for all the five visual
features defined in Section IV. A feature selection stage can also
determine the combination of features that performs best for a
given change detection task. In case more than one feature was
involved in the change detection framework, the between-BMU
distances on different feature SOMs had to be combined. The
distances were first normalized on each feature map separately,
into the range [0, 1], by histogram equalization. That process
aimed to compensate for cases when the average distances
were larger on one map than on the others. These equalized
distances are then summed to produce the final value indicating
the amount of change.

One must note that this unsupervised detection scheme treats
all kinds of changes equally. As a result, a good detection per-
formance cannot be expected for any specific type or semantic
class of changes. For such needs, provided that the labeled

training data are available, the supervised detection technique
described in Section V-C will be more appropriate.

VI. RESULTS

The proposed methods were evaluated quantitatively and
qualitatively for different tasks: interactive and off-line detec-
tion of built-up areas, and supervised or unsupervised change
detection. The proposed change detection methods were also
quantitatively compared to other change detection methods.

A. PicSOM for Detection of Buildings

The performance of the proposed methods for detecting
buildings in very high resolution images was evaluated quanti-
tatively by the ROC curve analysis, and both quantitatively and
qualitatively in an interactive experiment on a validation set.

1) Using the 2002 Training Set to Detect Buildings in the
2005 Set: Considering imagelets from the study scene and their
associated labeling in 2002 and 2005, we searched for a good
combination of features to detect buildings. A training set was
made up of the 5041 imagelets of 2002 from the study scene,
while the testing set contained the imagelets of the 2005 study
scene. Those sets included 244 and 266 buildings, respectively.
Twofold cross validation on the training set was used with a
sequential forward selection (SFS) [33] to select those features
which maximize the area under the ROC curve [32], denoted
here as auc. NDVI, edges, and color moment features were
found to form the optimal feature set, whose combination gave
the highest area under curve auc = 0.94. Some ROC curves
for the testing set are shown in Fig. 10. The color moment
feature alone performed well too, but it did not have as good
a sensitivity in the beginning (left part) of the ROC curve as the
combination of those three features.

2) Interactive Validation: In this experiment, the feature
SOMs were trained on the imagelets of both years from the
study scene. A validation set was taken from the same original
QuickBird images, but in different geographical extents. This
set was cut into 60 x 90 = 5400 imagelets for each year, in
the same manner as the training set in Section II. PicSOM
interface was then used to retrieve, from the 2005 validation
set, imagelets that contain buildings.

Two subexperiments were conducted and repeated by four
persons; two of them being external to the present paper. In
experiment A, the plain CBIR approach with query by pictorial
example and relevance feedback was evaluated. In the first
query round, the PicSOM presented to the user 20 imagelets
that were picked randomly from the validation set. The user
would then select those imagelets containing man-made struc-
tures other than roads (e.g., buildings or boats). These imagelets
marked as relevant were fed back to the PicSOM, that returned
in the next query round 20 other imagelets similar to those
already selected. The experiment was stopped after ten query
rounds. In experiment B, the feedback was brought to the
PicSOM both by the user (relevance feedback as in A) and by
the class model (imagelets containing buildings in 2002 training
set), in equal weight. The initial selection of 20 imagelets
presented to the same user was identical in both experiments,
but different between the four experimenters.
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The number of relevant images returned versus query round
is shown in Fig. 11. The lines are the average results over
the four experimenters, with a standard deviation +¢ marked
by “x” and “0.” On the average, only 1.5 imagelets from the
initial random set of 20 imagelets contained a building. There
were probably only a few imagelets containing houses in the
validation set, as there were in the training set (only about
200). In both experiments, the PicSOM returned a comfortable
majority of relevant images already after three query rounds.
The system seems to perform slightly better when the class
model is integrated into the feedback mechanism. However, the
result of experiment A suggests that the plain CBIR system is
also performing well in the interactive building detection.

Similar results were achieved when visually selecting
clearcuts or arable land as a target. This already shows a used
case of the PicSOM system with the remote sensing data, as
a supervised, general purpose, and interactive tool for satellite
image annotation, by visual and intuitive querying. A proposed
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Fig. 11. Average number of relevant imagelets versus query round,
(A) without and (B) with the class model.

visual output consists of “lighting up,” in the studied satellite
image, only the imagelets in which objects of interest have been
detected—e.g., buildings in Fig. 12.

B. Supervised Change Detection

Our proposed supervised change detection method was eval-
uated in its ability to find buildings that have appeared be-
tween years 2002 and 2005. The labeled database contained
40 imagelet pairs where this change really took place. As
an independent testing set was not available, we selected the
optimal set of features for change detection by optimizing the
ROC auc value for the training set of 20022005 imagelet pairs
with the SFS algorithm. A baseline change detection method
was also used in a quantitative comparison.

1) Baseline: As a baseline for supervised change detection
method, we used a postclassification comparison [21]. Panchro-
matic and multispectral data were merged and classified by
a standard maximum likelihood. Prior probabilities of classes
were set to 0.3 for water and forest, and 0.08 for the other five
classes. Training areas for each class were manually delineated
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Fig. 12. Imagelets containing buildings (2002 study scene), mapped back to
the original image coordinates.
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Fig. 13. ROC curve of the supervised detection of buildings appeared between
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on the 2002 and 2005 full scenes by a visual inspection. For
each year, exactly half of the buildings from the ground truth
built in Section II-C were used in the training.

In order to allow a comparison with our method, the two
classification images were cut into imagelets. For each imagelet
pair, the number of pixels classified as buildings in 2005 and
that were not buildings in 2002 was counted. By focusing on
the detection of appeared buildings, imagelet pairs were sorted
by this decreasing value and compared to the ground truth, to
build the ROC curve in Fig. 13.

Fig. 14. Thirty most prominent changes between 2002 and 2005 detected
in the edges SOM are marked on the map—these areas match well with true
changes in buildings.

2) Proposed Method: 1t turned out that the best detection
accuracy was obtained by using the edges feature alone. Its
ROC curve with auc = 0.87 is shown in Fig. 13. Other features
and feature combinations performed rather poorly in this task,
with an auc at best close to 0.6. Our content-based supervised
change detection method is more accurate than the baseline
method at the beginning of the ROC curve, with less false
positives. Later, the baseline outperforms the proposed method.
However, in the baseline method, half of the buildings in the
2005 were manually delineated during training, whereas our
method did not use any knowledge about buildings in the 2005
image—only in 2002.

Setting the detection threshold in our method at 71 imagelet
pairs, 12 true positives were returned (effective changes in
built-up areas) and 59 false positives. A higher threshold value
returned 11 true positives and 19 false positives. These 30
locations where changes were detected are shown with circles
and red color over the test area in Fig. 14.

C. Unsupervised Change Detection

We evaluated our unsupervised change detection method
with the ground truth available for buildings in 2002 and 2005.
Imagelets containing only water were discarded—they would
otherwise have contributed too much in the set of the “most
changed” imagelets. The best feature combination was searched
with SFS, maximizing the area under the ROC curve.

1) Baseline: We considered some variations of the image
difference [21] as baseline methods for unsupervised change
detection. Difference images were computed for panchromatic
and for each multispectral channel. The square root of the sum
of square differences between each multispectral channel was
also computed, resulting in one change magnitude image.

No threshold was applied to the change magnitude images.
They were cut into imagelets, that were then sorted by a
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Fig. 15. ROC curves for unsupervised change detection in built-up areas.

decreasing order of the sum of the change magnitude over all
imagelet pixels. By a comparison to the ground truth, ROC
curves were produced—Fig. 15.

2) Proposed Method: The best result was obtained with the
combination of average RGB and edges features, which gave
auc = 0.63, as shown in Fig. 15. The result is quite reasonable
as the procedure detects all the changes, not only changes in
buildings. Therefore, false positives appear quite often, but
not so often as with random picking. However, if we would
like to really demonstrate this method’s potential, we would
need a ground truth that includes all changes, not only in
buildings.

Image differencing on panchromatic channel performed bet-
ter than our method. Similar results were obtained with the NIR
channel only, although slightly less accurate. The three optical
channels considered independently in the image differencing
performed quite poorly, with an ROC curve below the diagonal,
similar to that obtained with the combination of all multispec-
tral channels—Fig. 15.

The choice of the threshold (how many imagelet pairs are
considered to exhibit significant changes) is problem dependent
both in the supervised and unsupervised methods. For instance,
when monitoring a strategic site, missing an appearing target
is worse than returning false positives. In earlier work [25], we
heuristically proposed to set the threshold at the square root of
the number of imagelet pairs in the database. We empirically
observed that areas where color moment feature had substantial
differences matched well with clearcuts—i.e., forested areas
that had been cut in between 2002 and 2005.

VII. DISCUSSION

A. Detection of Man-Made Structures

The set of features that performed best for detecting build-
ings in 2005 after training the PicSOM on the 2002 database

(Section VI-A) was formed by NDVI, color moment, and edges
features. In those cases, the surrounding or the context of a
building is a useful hint, because buildings usually appear in
groups and in mutually similar environments. Yet, this feature
combination did not work well for supervised change detection.
This may be because color moments and NDVI very seldom
change when a new building is built, as they tend to appear
in the vicinity of the existing buildings. Therefore, feature
combinations that are good for detecting buildings are not
necessarily good for detecting changes in buildings. In other
words, the context may be important for detecting a building,
but it is often nonchanging when such a building appears or
disappears in a short time frame, like three years in our study.

The targets of interest were small-sized buildings, which
made their detection even more challenging. Small buildings
can easily remain undetected by a feature extraction if masked
by high trees or shadows. Detection may also fail when the
building is located on an imagelet border; thus, only a part
of it is present in the imagelet. Moreover, the features should
account for different target sizes and adapt to various spatial
resolutions, depending on the sensor. The importance of scale
for satellite image description has been emphasized in [28].

B. Change Detection

Pixel-based change detection in very high resolution imagery
is a challenging task, which is limited by the requirement of
pixel or subpixel accuracy registration. In the context of change
detection, a clear advantage of the decomposition in imagelets
is that it relaxes this constraint. Slight misregistrations remained
between the 2002 and 2005 images, but it did not influence the
efficiency of our methods.

A building appearing between 2002 and 2005 was a rare
event—only 40 imagelet pairs in our database. In addition, if
the earlier imagelet already contains a building, the appearance
of a new building in the later image could remain undetected. In
such a case, the increase of the discriminative value associated
to buildings might not be significant enough that it would
suggest a new building has appeared. Furthermore, our current
ground-truth labeling does not take into account the number of
objects of a given class in an imagelet.

The proposed change detection method performed slightly
better than the baseline method in the supervised case, while
needing a less user interaction than a postclassification change
detection. However, our unsupervised change detection method
did not perform as well as simple image differencing on
panchromatic or NIR channel. This may be because the
PicSOM system was not tuned for unsupervised detection,
but rather, it takes advantage of the relevance feedback in the
supervised case—either from class models or user interaction.

Some changes were attributed to the locations containing in
fact the same land cover (often forest) in 2002 and 2005. Those
cases were mainly vegetation changes between the beginning
and end of summer. While this could be interesting for season
monitoring applications, it dragged the PicSOM away from
the goal of detecting appearing or disappearing man-made
structures. A clear definition within the system of what changes
are of interest is needed. How this should be done remains
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open. This could be partly circumvented by radiometrically
calibrating the images before loading them into the PicSOM.

A way to refine our change detection method would be to
provide two content targets to the PicSOM: a content from
which the change occurs (earlier target) and a content to
which the change occurs (later target). This would allow an
intuitive and interactive definition of interesting changes by
the user—e.g., by selecting imagelets containing forest as the
earlier target and buildings as the later target, the system would
detect newly constructed buildings in forested areas.

The approach developed here could handle more than two
satellite images for change detection applications. One could
train the PicSOM on the imagelets extracted from all images
available up to a given time, then query the database for
imagelets representative of the objects of interest. The system
would then return the imagelets, where significant changes have
been detected in the later scene, according to the distance on a
feature SOM between the BMUs of earlier and later imagelets.

C. Size of Imagelets and Objects of Interest

The influence of the imagelet size has to be studied more
carefully. If smaller than the objects of interest, it is expected
that an imagelet would not restitute all spatial or spectral prop-
erties of the target. On the other hand, larger imagelets would
contain a too great proportion of perturbating noninteresting
content compared to the spatial extensions of the objects of
interest—typically in our study scene, a small isolated building
surrounded by forest. In that case, the imagelets would be
clustered in the SOM according to their dominant content,
which would not necessarily be the content of interest.

Therefore, the size of imagelets has to be adjusted so that the
information they contain is representative of the target. Simi-
larly, the imagelet size should adapt to the scale of interesting
changes. In an operative system, the expected dimensions of the
interesting targets or scale of changes could be specified by the
user or preset, depending on the application, then could be used
to determine an appropriate imagelet size.

The 100 x 100 pixel imagelets, extracted from QuickBird
images, seemed to provide a tradeoff between the two undesir-
able situations. Luckily (and surprisingly), not too many build-
ings in the study scene were split into two or more imagelets. In
order to reduce the consequences of “cutting” an object of inter-
est into several nonoverlapping imagelets (namely, generating
“artificial” objects on the borders of imagelets), overlapping
imagelets could be used.

The methods should also make use of the spatial information
with respect to imagelets or context: the neighboring imagelets
of a given imagelet may bring a useful information for the
analysis of satellite images. For example, built-up areas are
often concentrated, and the proposed methods currently do not
specifically handle objects bigger than the imagelets. The use
of the coordinate feature could help detecting those bigger
structures by considering the neighboring imagelets. The co-
ordinate feature introduced in this paper (but not really used
in the described experiments) is a step in that direction, as the
relevance spreading in this case is directly related to favoring
neighbors of relevant imagelets in retrieval.

VIII. CONCLUSION AND FUTURE WORK

We have presented how a CBIR system, PicSOM, can be
used with the remote sensing images for tasks like detection of
man-made structures, as well as for supervised or unsupervised
change detection. The approaches rely on the decomposition
of a satellite image into several thousands of small images or
imagelets to generate a database. After extracting features from
the imagelets and training SOMs, the imagelet database can be
queried. Relevant images can be retrieved either automatically
or interactively by a user in a visual and intuitive manner.
The same framework allows the detection of man-made struc-
tures as well as changes between two images or both tasks
simultaneously.

Quantitative and qualitative evaluations of the proposed
methods were performed. The results were encouraging, con-
sidering we have presented a new approach to the challenging
problem of change detection in very high resolution images.
Future work might include better shape descriptors for the
purpose of building detection. The same kind of approach could
be applied to radar images, in which case the importance of the
adapted feature extractors would be critical. Preliminary results
on a database of imagelets constructed from an ASAR scene
were encouraging.

The versatility of PicSOM will allow several applications
to be embedded in the same system, only to be differentiated
by the type of query. Further research will aim at a fully
operative and interactive system built around the PicSOM.
Possible applications of the proposed methods include fast
interactive analysis of satellite images. After the SOMs have
been trained, a new image can be presented to the system
in order to be automatically analyzed or visually queried for
structures of interest. The approach could also be used in long-
term monitoring of strategic sites. In such a setting, each new
image would first be analyzed, then integrated in the training
set for improving the knowledge of the system about the area
under surveillance.
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