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Abstract:

Recently, a new type of neural network method, namely deep learning, was discovered,
which yielded excellent results in various tasks such as handwritten digit recognition,
speech recognition and facial expression recognition. Different from traditional
multi-layer perceptron learning methods (MLP), an unsupervised pre-training step
before supervised learning is of huge importance in learning successful features. Also,
it is argued that the deep architecture has more expressive power comparing to
the conventional shallow networks, such as support vector machine or multi-layer
perceptrons.

Even though deep learning has yielded a large amount of world-class records in
different tasks, there is little research on how the deep network can be used in texture
analysis.

For this particular problem, we consider the problem of modeling complex tex-
ture information using undirected probabilistic graphical models. Texture is a special
type of data that one can better understand by considering its local structure. For that
purpose, we propose a convolutional variant of the Gaussian gated Boltzmann machine
(GGBM), inspired by the co-occurrence matrix in traditional texture analysis. We also
link the proposed model to a much simpler Gaussian restricted Boltzmann machine
where convolutional features are computed as a preprocessing step. The usefulness of
the model is illustrated in texture classification and reconstruction experiments.

Keywords: Machine Lerarning, Unsupervised Learning, Deep Learning, Boltzmann
Machine, Texture Analysis, Pattern Recognition
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Chapter 1

Introduction

1.1 Background and Related Theory
Deep Learning [31] [3] has made a renaissance in the field of neural network research since
2006. It is a new learning paradigm which has resulted in state-of-the-art performances in
various learning problems, such as handwritten digit recognition [31], speech recognition [18],
facial expression recognition [56], document classification [30], natural image modeling [16],
etc.

Prior to deep networks, conventional neural networks were intensively studied since 1980s
after the invention of the back-propagation algorithm [57]. Artificial neural network stemmed
from information passing paradigm of the biological brains where the information is fed to
a sensory input and a series of possible actions are expected as outputs. In order to learn
the mapping, a hidden layer resembling the function of brain is defined such that the hidden
patterns or information can be extracted from the sensory inputs.

Conventional artificial neural networks [28] originated from a simple network called per-
ceptron, and the stacked layer structure is also called multi-layer perceptron. The connec-
tions between layers are directed and the information typically goes from the input to output
layer through the hidden layers. Different from other machine learning algorithms such as
linear regression, the multi-layer perceptron can process data in a nonlinear distributed way.
It was proved in [32] that a multi-layer perceptron network with only one hidden layer can
approximate any possible smooth enough mapping function from the input to output with
a sufficient amount of hidden units.

Different from the deep network, the conventional multilayer perceptron is regarded as
shallow network as the typical number of hidden layers in multilayer perceptron is essentially
no more than one or two. Actually, increasing the number of the layers of hidden structure
in shallow network hardly improves any performance of the network but introduces more
risk of over-fitting and learning effort [4]. A graphical illustration of multi-layer perceptron
can be found in Figure 1.11. It shows that the input is fed to a one hidden layer network
and optimally the hidden neurons will capture the patterns of the input-output pairs, and

1Original version appeared at http://www.texample.net/tikz/examples/neural-network/
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Figure 1.1: The semantic illustration of multi-layer perceptron

Figure 1.2: The semantic illustration of deep network

also generalize to un-seen new data.
However when people tried to mimic a large-scale deep network using multi-layer per-

ceptron, the traditional back-propagation algorithm failed to learn anything meaningful in
a reasonable time. For instance, in a multi-layer perceptron with more than 5 hidden layers,
the random initialization of weight matrices and back-propagation is typically not signifi-
cantly better than a multi-layer perceptron with a single hidden layer. The invention of deep
network, utilizing the Boltzmann machine, tackled this problem, and opened up a promising
direction in the research of artificial neural networks. For comparison, a graphical illustra-
tion of deep network is shown in Figure 1.2. Different from MLP, the deep network has a
hierarchical layered structure with multiple intermediate hidden layers. Addition to that,
between the layers of hidden layer, bi-directional inferences are present.

The reason that deep learning has attracted a lot of attentions in the field of the neu-
ral network and machine learning is that it not only generally outperforms the conventional
multilayer perceptron in different tasks, but also surpasses the performance on certain recog-
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nition tasks where people had to design various complicated human engineered feature ex-
traction methods, such as speech recognition [18]. It also unified differences between feature
extraction methods in different fields [53]. In previous machine learning tasks, people in
different fields usually designed different feature extraction methods for their own tasks. For
instance, SIFT [43], HOG [19] in computer vision, MFCC [21] [49] in speech recognition and
textons [68] in texture analysis. In addition to that, the deep network is argued to have
more expressive power comparing to the conventional shallow network [4].

The ideology of deep architecture goes beyond simple recognition tasks. It is also applied
to model the image transformation between a pair of images, or a pair of objects from
different modalities [47], the internal structure of single image [55], and structured output
prediction problem [50]. These problems are extremely hard if one tries to explicitly model
the statistical property of the target data manually as there is simply no way of modeling
some non-rigid transformation using traditional simple machine learning methods.

1.2 Statistical Approach to Texture Modeling
Texture is a common characteristic of different objects. Texture is often defined as a fixed
type of patterns on the object surfaces or contours that resembles distinguishable patterns
from other objects. For instance, the bark patterns from trees, the red block patterns
from brick walls, etc. The texture information is extremely important because textural
information is one of the only patterns that stays constant while the shape, illumination,
perspectives of objects changes. For instance, in a construction site, there are hundred
of millions of broken pieces of garbage that have to be sorted and utilized. In order to
automatize the process, one has to design such a system that the texture information is
widely studied as the shape and color of the objects might be corrupted.

From this perspective, a texture is a discriminative feature that can be utilized to perform
a range of automatic tasks. To study the benefit of texture, like most of other machine
learning problems, the problem is considered using two different approaches: discriminative
learning and generative learning. In discriminative texture modeling, the task is to learn the
different distinct properties of texture such that the learned model can classify or identify
different textures without explicitly having the knowledge about how the texture is formed.
On the contrary, the generative learning typically assumes that there is a specific generative
pattern for each type of textures, and the learned model is capable of doing more than
classification tasks. The generative models can be used to reconstruct damaged textures,
and also to generate textures under some circumstances.

Texture modeling has been an important topic for decades in different subfields of ma-
chine learning, data mining and computer vision. One of the earliest work concerning
texture modeling using machine learning algorithms dates back to 1962 in [33] and was
further discussed in [34]. Some actual research interest in texture modeling started with
binary image patterns, e.g., see [5] [35]. Soon after the basic research with binary textures,
research in the field of texture modeling moved to grey-level pixels texture images. For
instances, [26] [25] and [60]. Some further advances have been made in 3D texture model-
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ing [17] [37] [41] [59] [66] [67] with the capability of categorizing textures even when there
are massive camera pose, illumination, affine transformation changes.

Recent papers regarding texture modeling are published in [42] and [36]. In these two
papers, two rather new statistical approaches have been explored in the field of texture
modeling, namely the compressed sensing [9] [10] [22] and the deep learning [31][36]. The
texture classification using random features shows superior performances comparing to other
state-of-the-art methods yet preserving simple computational models. On the other hand,
texture modeling using deep network gives possibilities of learning a comprehensive list of
different generative models for different texture such that a list of possible actions can be
performed if necessary, such as the texture reconstruction, synthesis and recognition.

1.3 Contribution of This Thesis
In this thesis, the possibility of modeling the statistical distribution of texture information
using different kinds of Boltzmann machines is explored. Boltzmann machines [1] are typi-
cally regarded as the building blocks for the deep network, and different variants of them lead
to completely different modeling capabilities. There are enormous amount of publications
on deep learning in recent years, but there is little research in the field of texture modeling.

In this thesis, the author considers exploring various texture structures using a convolu-
tional higher order Boltzmann machine. The network tries to consider the pixel interactions
in a local area in a way that the network can capture the local interactions within the dif-
ferent texture information. As the proposed network is rather complicated at the first place,
an approximated network and its learning rule are also proposed.

1.4 Structure of the Thesis
This thesis consists of several chapters. The background knowledge on conventional neural
networks and deep networks is presented in Chapter 2. A extensive review on texture
modeling is addressed in Chapter 3. The proposed convolutional higher order Boltzmann
machine is discussed in Chapters 4 and 5, which is followed by the conclusion of the work in
Chapter 6.

4



Chapter 2

Background on Deep Learning

2.1 Introduction to Deep Architecture
Deep network [31] is a newly developed hierarchical learning paradigm which tries to extract
a set of hierarchical meaningful binary features from an either binary or real-valued input
data vector. It usually consists of stacks of same simple building block, and the output of
one building block behaves as the input of the next building block.

For different tasks, there exist several common building blocks for the deep network,
for instance, the binary restricted Boltzmann machine and Gaussian Bernoulli restricted
Boltzmann machine for modeling a single data vector, the conditional restricted Boltzmann
machine for modeling a conditional probability distribution, and the gated Boltzmann ma-
chine for modeling the higher-order relationship between two sets of possible data vectors.
Also, another type of building block is called auto-encoder where the model is to learn a
compressed representation of the data. As the autoencoder is not discussed in this thesis,
we left this particular building block for future research questions. For more details, please
see [2].

In this chapter, we will review the structural differences of different Boltzmann machines,
and also their specific learning algorithms.

2.2 Boltzmann Machine
Boltzmann machine is a stochastic recurrent neural network which consists of binary neu-
rons [28]. The states for the neurons m are either "on" or "off", which often denotes as 1

and 0 for computational simplicity. The connections within neurons m are un-directed, and
often the self-connection is always set to 0. In the definition of Boltzmann machine, and we
generally denote all the neurons together as m.

The primary goal of the Boltzmann machine is to learn to model the properties of input
data vector correctly by a Boltzmann distribution. In order to do that, the set of neurons
are always divided to two parts: visible neurons and hidden neurons. For the consistency of
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the thesis, we denote the visible neurons as x and the hidden neurons as h. The target input
data vectors will be fed to the predefined visible neurons x, and the hidden neurons will try
to capture the correct data distribution of input data vectors by the Boltzmann distribution.

We assume the data distribution of input vector is denoted as P (X), where X is the
whole training samples resembling x. To compute the probability, we often define P (X) as

P (X) =
∑
H

P (X,H) =
∑
H

1

Z
exp (−E(X,H)) (2.1)

where H is the corresponding hidden state of the Boltzmann machine for X. Z is the
normalization constant for the energy model. E(x,h) denotes as the energy of the neurons,
where

E(x,h) = −
∑
ij,i6=j

wijmimj (2.2)

where wij is the weight between two different neurons mi and mj .
Training a general Boltzmann machine is considered to be very difficult due to its complex

dependencies, and the computationally intractable normalization term Z. But this does not
mean that the training cannot be done. To learn the data distribution P (X), one usually
tries to maximize the log-likelihood of the marginal distribution of P (X,H) with respect to
X. To write it down,

L(w) = logP (x) = log
∑
h

1

Z
exp (−E(x,h))

= log
1

Z

∑
h

exp (−E(x,h))

= log
∑
h

exp (−E(x,h))− log
∑
x,h

exp (−E(x,h))

(2.3)

Taking the derivate with respect to the parameter wij , we can have

∂L(w)

∂wij
=

∂

∂wij

log
∑
h

exp (−E(x,h))− log
∑
x,h

exp (−E(x,h))


=

∂

∂wij

log
∑
h

exp

∑
ij,i6=j

wijmimj

− log
∑
x,h

exp

∑
ij,i6=j

wijmimj


=

〈∑
h exp

(∑
ij,i6=j wijmimj

)
mimj∑

h exp
(∑

ij,i6=j wijmimj

) 〉
d

−

〈∑
x,h exp

(∑
ij,i6=j wijmimj

)
mimj∑

x,h exp
(∑

ij,i6=j wijmimj

) 〉
m

= 〈mimj〉m − 〈mimj〉d

where 〈·〉d represents the expectation over the data distribution where input data vector is
x, and h follows the conditional distribution of the model given the input data P (h|x). Sim-
ilarly, 〈·〉m represents the expectation over the model distribution P (x,h). After obtaining
the gradient, the weights can be updated using simply the gradient ascent by

wij = wij + σ∇wij
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Figure 2.1: The graphical illustration of Boltzmann machine

where σ is the learning rate, which is generally chosen by the cross-validation or heuristically.
From the derivation above, in order to the get the gradient information about wij , we have

to compute the expectation of mimj over model distribution. This is in general intractable
as there are simply exponentially many possible combinations in the network1. Additionally,
due to the complex connections, one cannot efficiently compute the gradient information
block by block comparing to other simple Boltzmann machines. A graphical illustration of
the general Boltzmann machine can be found in Figure 2.12. From the figure, the black nodes
represents the hidden neurons, while the visible neurons are represented by the white node.
An arbitrary node is connected to all the other nodes, regardless of visible or hidden variables.
This structure gives the Boltzmann machine huge advantages of modeling the structural
information, yet the extremely difficult learning algorithms made the general Boltzmann
machine hardly applicable to an actual application.

1Of course, if there is a few neurons in both input and hidden neurons, the brute force approach
definitely works. Whereas the brute force method only work when the network is extremely small,
and this is basically useless in real-world data and problems.

2Modified from http://www.texample.net/tikz/examples/complete-graph/
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2.3 Restricted Boltzmann Machine
General Boltzmann machine is far from the real use due to its difficult learning process and
complicated network structure. However, there is an amazing simplification which will make
general Boltzmann machine useful, namely, removing the connections within the visible
neurons x and hidden neurons h such that the network is bi-partite. This simplification
resembles a very important building block for deep network, namely the restricted Boltzmann
machine. The word "restricted" means that the network is restricted in such a way that there
is only undirected connection from the visible neurons to the hidden neurons or vice versa,
but not within the visible neurons or hidden neurons.

Given the hidden neurons h and visible neurons x, the energy function of the model is
defined as

E(x,h) = −
∑
ik

xihkwik −
∑
i

xibi −
∑
k

hkck (2.4)

where wik represent the weight between the neuron xi and hk, and bi and ck denotes the
bias terms for neuron xi and hk respectively. The restricted Boltzmann machine similarly
tries to model the input data distribution P (x) by a set of hidden neurons h. The marginal
distribution P (x) can be computed as

P (x) =
∑
h

P (x,h) =
∑
h

1

Z
exp (−E(x,h)) (2.5)

To learn the model, the maximum log-marginal likelihood is sought, which is

∂L(w)

∂wik
=

∂

∂wik
logP (x) =

∂

∂wik

(
log
∑
h

1

Z
exp (−E(x,h))

)

=
∂

∂wik

log
∑
h

exp (−E(x,h))− log
∑
x,h

exp (−E(x,h))


= 〈xihk〉m − 〈xihk〉d

Due to the removal of the additional connections, P (x|h) and P (h|x) can be written
down in analytical form. This is crucial in training the restricted Boltzmann machine as
one has to perform an efficient Gibbs sampling over the model distribution. The exact
conditional forms of both of P (x|h) and P (h|x) make it possible to dramatically speed up
training a restricted Boltzmann machine. The detailed learning algorithm called contrastive
divergence will be discussed in later sections. For the completeness of the discussion, the
exact conditional forms are written here:

P (x|h) =
∏
i

1

1 + exp (−
∑

k hkwik − bk)

P (h|x) =
∏
k

1

1 + exp (−
∑

i xiwik − ck)

(2.6)

While the pre-constrained simplification gives excellent statistical properties to the re-
stricted Boltzmann machine, the graphical illustration is also changed dramatically. The
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Figure 2.2: The schematic illustration of restricted Boltzmann machine

semantic illustration of the restricted Boltzmann machine is shown in Figure 2.2. In the
figure, a visible neuron is only fully connected to the hidden neurons, and never connected
to the visible neurons.

2.4 Gaussian Restricted Boltzmann Machine
Restricted Boltzmann machine is capable of modeling only binary input vectors due to its
structural assumptions. This actually severely constrains the usability of the network as most
data set in the real world applications are real-valued, non-binary: image pixel intensities, sea
temperatures, object coordinates, signal strength, etc. Therefore, the extensions of restricted
Boltzmann machine for real-valued input data vectors are of huge importance. This resulted
in the development of Gaussian Bernoulli restricted Boltzmann machine [31][52].

Gaussian Bernoulli restricted Boltzmann machine is a variant of restricted Boltzmann
machine which has the ability to learn a set of binary hidden feature vectors from the
continuous valued input data vectors. The data vectors are considered to follow Gaussian
distribution. Shortly put, the new energy function is defined as

E(x,h) = −
∑
ik

xi
σi
hkwik +

∑
i

(xi − bi)2

σ2i
−
∑
k

hkck (2.7)

where all the parameters have the same meaning as those in the ordinary restricted Boltz-
mann machine except that bi and σi are new parameters that model the mean and the
variance of the continuous valued input neuron xi. The modification is done by keeping the
efficient Gibbs sampling possible while estimating the model distribution. The conditional
distribution form for P (x|h) and P (h|x) can be analytically computed as

P (x|h) =
∏
i

N

(
xi;σi

∑
k

hkwik + bi, σ
2
i

)

P (h|x) =
∏
k

1

1 + exp (−
∑

i xiwik − ck)

(2.8)

The semantic illustration of the Gaussian restricted Boltzmann machine is the same as
the structure in Figure 2.2, while the visible neurons are assumed to be Gaussian variables.
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2.4.1 Enhanced Gaussian Restricted Boltzmann Machine

From the conditional forms of the Gaussian restricted Boltzmann machine, one can observe
that the mean value of P (x|h) is controlled by the standard deviations σi. It it argued in [14]
that the distraction from the standard deviations in the sampling procedures decreases the
performance of the Gaussian restricted Boltzmann machine. Consequently, a new energy
form is proposed to remove the unsatisfactory distraction from the standard deviation. The
modified energy function is defined as

E(x,h) = −
∑
ik

xi
σ2i
hkwik +

∑
i

(xi − bi)2

σ2i
−
∑
k

hkck (2.9)

where each sample xi is divided by the variance instead of the standard deviation. Conse-
quently, the conditional forms that are used in learning are then

P (x|h) =
∏
i

N

(
xi;
∑
k

hkwik + bi, σ
2
i

)

P (h|x) =
∏
k

1

1 + exp (−
∑

i xiwik − ck)

(2.10)

The authors proved that the modified energy form is excellent in terms of learning the
generative models of images comparing to the old forms. Therefore, in my thesis, when I
need to train a Gaussian restricted Boltzmann machine, the modified version is always used.

2.5 Conditional Restricted Boltzmann Machine
Restricted Boltzmann machine and Gaussian Bernoulli restricted Boltzmann machine are
developed to model a data distribution P (x). However, in a real-world problem, we might
want to know the following information — the probability of event A given the event B.
In such circumstances, there are two set of data vectors x and y, and P (x) only is insuf-
ficient for modeling the conditional probabilities. Therefore, in order to model conditional
distribution P (x|y), the traditional restricted Boltzmann machine is extended to handle the
conditional forms by introducing a set of dynamic weights of binary or real-valued input
vector x such that they are determined by the presence of different information from y.
In general, the newly proposed form is considered as the conditional restricted Boltzmann
machine [62] [63] [50]. The new energy function for modeling P (x|y) is defined as

E(x,h;y) = −
∑
ik

xihkwik −
∑
i

xib
∗
i −

∑
k

hkc
∗
i

b∗i = bi +
∑
j

yjAij

c∗k = ck +
∑
k

yjCik

(2.11)

where b∗i and c∗k are the dynamic parameters for determining the weights and biases that
are determined by y. If we want to model the real-valued data vector in x, the energy model
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Figure 2.3: The schematic illustration of the gated Boltzmann machine

can accordingly change to

E(x,h) = −
∑
ik

xi
σi
hkwik +

∑
i

(xi − b∗i )2

σ2i
−
∑
k

hkc
∗
k

where only the normal bias terms are changed to the dynamic weights determined by the
presence of the additional data vector y.

Traditional Restricted Boltzmann machine is designed to model the model distribution
P (x), which only tries to model the data distribution correctly. In most problems, the
patterns modeled in the hidden neurons are considered essentially to be a better feature
set, where the hidden features in the data are better scattered. If one wants to build a
classifier for the data and label, the common way is to build a logistic regression model
on top of the learned feature. On the contrary, from the perspective of classification task,
conditional restricted Boltzmann machine is more natural as it directly tries to model the
conditional distribution P (x|y), which can be considered as the probability with which the
data is classified into the class x given the data vector y.

In many circumstances such as regression and classification, only the conditional distribu-
tion of the model is relevant. Also, as the conditional restricted Boltzmann machine is trying
to model P (x|y), the size of data vector and the label vector can be arbitrary. Therefore,
the conditional restricted Boltzmann machine has different applications: modeling human
motions [63], multi-label classification [50], and image denoising [50], etc. Another relevant
Boltzmann machine is called the Classification restricted Boltzmann machine [38] where one
tries to build a classifier directly using the restricted Boltzmann machine.

2.6 Gated Boltzmann Machine
Traditional restricted Boltzmann machine and its Gaussian variant both try to model the
patterns from a single data vector x. Moreover, the conditional restricted Boltzmann ma-
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chine steps further to model more complex patterns by considering the pattern within the
data vector x given the information about the prior data vector y.

One of the similarities of the aforementioned Boltzmann machines is that they only
consider the interactions between one visible neuron and one hidden neuron. This somehow
restricts the possibility of considering the higher order interactions between two or more
visible neurons and the hidden neurons. To this end, a higher-order Boltzmann machine
called Gated Boltzmann machine is proposed [46] [47]. Different from the other Boltzmann
machines in which there is a interaction term up to first order with respect to x, the gated
Boltzmann machine considers the interactions up to two input neurons and one hidden
neuron.

Similar to the conditional restricted Boltzmann machine where two data vectors x and y

are considered, gated Boltzmann machine tries to model the interactions between two data
vectors directly in a single interaction term. Therefore, a joint data distribution of (x,y) is
sought, where x and y can be defined as a pair of images [47] or data from different modal-
ities [48]. The gated Boltzmann machine is thus capable of modeling the highly complex
relationship between two similar structured data or the highly complex inner structures of
single structured data. The energy model of the gated Boltzmann machine is defined as

E(x,y,h) = −
∑
ijk

xiyjhkwijk −
∑
i

xibi −
∑
j

yjb
?
j −

∑
k

hkck (2.12)

where wijk defines a element wise interaction weight for a data triplet {xi, yj , hk}. b?j is
the bias term for the input neuron yj . The tensor term wijk gives the model the ability to
model the interaction between the input vectors x and y in a set of hidden neurons h. For
modeling real-valued input vectors, a Gaussian bias term can be defined for both x and y.

The number of free parameters in the tensor weight wijk can be dramatically large. Given
the size of two input vector x and y as 500, and h as 1000, the number of parameters in wijk
can go up to 500× 500× 1000. The increase of the parameters makes the learning problem
too hard to be efficient. Therefore, a low rank approximation form

wijk →
∑
f

wxifw
y
jfw

k
kf

has been proposed [47][55]. This approximation leads to an easier learning formulation, and
yet gives a better performance in terms of modeling the higher order relationship between
neurons.

A semantic illustration of the gated Boltzmann machine is shown in Figure 2.3. From
the figure, it is identified that the hidden neurons are used to model the interactions between
the other two visible input neurons by controlling the weight of the connections between the
input neurons. Please note that there is no connection within each set of input neurons,
which preserves the nice properties of training in restricted Boltzmann machine.

2.7 Convolutional Boltzmann Machine
An interesting observation about the image recognition task is that images are often divided
into small patches of n× n, where n is typically 8 to 32. Also, when we input the data, the
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image patches are flattened to a vector form, and thus the input vector size is often from
64 to 1024. Therefore, image features are usually high-dimensional. It’s often considered
that high-dimensional features are harder to capture, and so special treatments have to be
applied. From the context of deep learning, the input image sizes can be too large to process.
For instance, even a small enough image, with size 32× 32, is already over 1000 dimensions.
Therefore, in the field of deep network, a model called convolutional deep belief network was
proposed to extend the traditional deep network so that it is capable of processing arbitrary
size of images [40].

The building block of the convolutional deep belief network is still a variant of restricted
Boltzmann machine. Differently, the proposed restricted Boltzmann machine is designed
to cope with arbitrary size of input vectors by performing a convolutional operations on
hidden feature vectors. Therefore, this particular restricted Boltzmann machine is also called
convolutional restricted Boltzmann machine. To define a convolutional restricted Boltzmann
machine, the weights are shared between several hidden neurons and input vectors.

In convolutional restricted Boltzmann machine, there are also only hidden layer H with
size k×k and one input layer V with size N ×N (N is considered to too large for processing
in a normal RBM). Differently, in convolutional restricted Boltzmann machines, there are
K sets of hidden vectors for the convolutional restricted Boltzmann machine. Each hidden
neuron has k× k neurons, and accompanying weight matrix W has the size k×N . In order
to restrict the computational cost, the weight matrix W is shared between different hidden
vectors. Therefore, the energy function is defined as

E(v,h) = −
K∑
k=1

N∑
i,j=1

K∑
r,s=1

hkijW
k
rsvi+r−1,j+s−1 −

K∑
k=1

bk

N∑
i,j=1

hkij − c
N∑

i,j=1

vij (2.13)

where b is the shared bias for the set of hidden vectors. To simplify the notations a bit, the
Eq. 2.13 can be re-formulated as

E(v,h) = −
K∑
k=1

hk �
(
W kv

)
−

K∑
k=1

bk

K∑
i,j=1

hkij − c
N∑

i,j=1

vij (2.14)

where � represents the summation of the dot product of two matrices. By sharing the weight
and restricting the dimensions of the hidden neurons, the dimensions of the input vectors
are greatly reduced while the majority of the hidden features are learned.

However, only by creating convolutional hidden layers does not allow one to capture
comprehensive yet simple enough high level feature representations like the normal deep
network. To do that, one has to perform an additional step called probabilistic max pooling
where the objective is to provide a concise yet informative layer for recognition. However,
different from the traditional max-pooling operations in feed-forward neural network, the
probabilistic max pooling operates in a manner where bi-directional inferences are still pos-
sible. More importantly, the introduction of the probabilistic max pooling layer can reduce
the size of the hidden layers by a significant order, which potentially makes the learning
scalable in terms of the size of the input images.

To define the probabilistic max pooling, an additional pooling layer P is defined. As
there are in total K different hidden layers, there are also P number of pooling layers. For
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Figure 2.4: The convolutional Gaussian restricted Boltzmann machine [40]

each pooling layer, the number of elements in pooling layer is shrunk by a constant factor C
by grouping one neuron p in the pooling layer P with a small block of neighboring hidden
neurons Bα . Therefore, for a certain detection block Bα in hidden layer Hk, the connected
neuron p is activated in the pooling layer P . The neuron p is active if and only if one hidden
neuron is active within the detection block Bα. The semantic illustration of the convolutional
restricted Boltzmann machine is shown in Figure 2.4.

By defining the probabilistic max pooling, the formal definition of the convolutional
restricted Boltzmann machine can be formulated as

E(v,h) = −
∑
k

∑
i,j

(
hki,j

(
W kv

)
ij
+ bkh

k
ij

)
− c

∑
ij

vij

subject to
∑

(i,j)∈Bα

hkij ≤ 1,∀k, α
(2.15)

To create a deep network, the convolutional restricted Boltzmann machines are stacked
together, and then pre-trained layer-wise to obtain a stable result.

Convolutional deep belief network is interesting because it has the ability to process
full-size images, and can produce truly high level features in their top layers. One set of
filter examples are shown in Fig 2.5.In the first row, the filters learned by the probabilistic
max-pooling operations are shown, while the bottom figure shows the features learned from
the original convolutional hidden layer.
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Figure 2.5: A middle level feature learned by the convolutional Gaussian restricted
Boltzmann machine [40]
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2.8 Learning Algorithms
In the pervious sections, a few representative formulations for Boltzmann machine are re-
viewed. Different formulation is used when the problem is different. Even though the energy
function formulation shows difference, the underlying learning algorithm is the same.

Recall that training a Boltzmann machine needs to maximize the log-marginal likelihood
of data distribution. As all the other proposed Boltzmann machines are special versions of
the general Boltzmann machine, the same optimization strategy should apply to all of them.
No matter if the Boltzmann machine has to learn P (x), P (x|y) or P (x,y), the optimization
strategy is to maximize the log-marginal distribution of the corresponding data distribution.

Without losing the generality, we define the energy function of Boltzmann machine as
E(m,h) where m can be a general term that resembles the possible number of data vectors,
for instance, x in the restricted Boltzmann machine and (x,y) in the conditional restricted
Boltzmann machine and the gated Boltzmann machine. The marginal distribution of P (m)

is defined as
P (m|θ) =

∑
h

1

Z
exp (−E(m,h|θ)) = 1

Z
exp(−F (t)) (2.16)

where Z is the normalization factor, and Z =
∑

m,h exp (−E(m,h)). θ is a general repre-
sentation of the parameters in different models. F (m) is called the free energy of the model,
which can be calculated in a linear time with respect to the number of hidden neurons. To
model a particular parameter θ, we need to maximize the log-marginal maximum likelihood
by the gradient ascent algorithm, which is followed by

∂ logP (m)

∂θ
=

∂

∂θ

(
log

1

Z
exp (−F (m|θ))

)
=

∂

∂θ

(
log exp (−F (m|θ))− log

∑
t

exp (−F (m|θ))

)

=
∂ − F (m|θ)

∂θ
−
∂ log

∑
m exp (−F (m|θ))

∂θ

The first term of the gradient can be efficiently computed and it is always called the positive
gradient. The training difficulties of the energy model arise from that the second term of
the gradient, often called as a negative gradient, cannot be efficiently computed with respect
to the number of input neurons and hidden neurons, and thus an efficient approximation
algorithm for the negative gradient is required.

In this section, a set of approximation algorithms are reviewed, and the advantages and
disadvantages of different methods are also discussed.

2.8.1 Gibbs Sampling

Gibbs sampling [13] is a Markov chain Monte Carlo sampling algorithm for obtaining a
sequence of random samples from a multivariate stochastic distribution. It is an alternative
approach for drawing samples from a computationally intractable joint distribution such as
P (t,h).
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In quite a few probabilistic settings, where the joint distribution of the variables is in-
tractable, the conditional distributions of the variables can be computed efficiently. Gibbs
sampling stemmed from this fact, and enables to obtain samples from the true joint distri-
bution efficiently. In order to sample from the joint distribution, the Gibbs sampler first
initialize a set of random values for the set of variables, and then obtains a sample for a vari-
able from the conditional probability distribution of that variable given the rest of samples.
Afterwards, another sample is drawn for another variable from its conditional form given the
previous sampled variable and other random variables. This process has to proceed until the
the sampled distribution reach the equilibrium distribution.

In Boltzmann machine, due to the partition function in the model distribution, drawing
samples from the joint probability distribution is too expensive to do in general cases. How-
ever, thanks to the bipartite structure in the simplified Boltzmann machine, it is however
possible to compute the conditional forms of the model exactly and efficiently.

In the simplest form, we introduce the example for sampling from the model distribu-
tion in the restricted Boltzmann machine. Similar sampling rules can be applied to other
Boltzmann machines as long as the Gibbs sampling is possible in those models.

In restricted Boltzmann machine, the model tries to learn the pattern from the data
distribution P (x) in a set of hidden neurons. Maximizing the log-marginal-likelihood of
model distribution is identical to minimizing the inverse version of that. Therefore,

L(θ) = − logP (x) = − log
∑
h

P (x,h)

To minimize, take the derivative of negative-log-likelihood with respect to parameter θ,

∂L(θ)
∂θ

=
∂

∂θ
(− logP (x)) =

∂

∂θ

(
− log

∑
h

P (x,h)

)

=
∂

∂θ

(
− log

1

Z

∑
h

exp(−E(x,h))

)

=
∂

∂θ

(
− log

∑
h exp(−E(x0,h))∑
x,h exp(−E(x,h))

)

=
∂

∂θ

− log
∑
h

exp(−E(x,h)) + log
∑
x0,h

exp(−E(x,h))


=

(∑
h exp(−E(x,h))∂−E(x,h)

∂θ∑
h exp(−E(x,h))

)
−

(∑
x0,h exp(−E(x,h))∂−E(x,h)

∂θ∑
x,h exp(E(x,h))

)

=

〈
∂ − E(x,h)

∂θ

〉
P (h|x)

−
〈
∂ − E(x,h)

∂θ

〉
P (x,h)

where we can see that one has to compute the expectation over the model distribution
P (x,h) to calculate the gradient information. This computation is intractable but the block
Gibbs sampling can be done extremely fast due to the factorial nature of the Boltzmann
machine. To sample from the model distribution, Gibbs sampler alternatively samples from
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Algorithm 1 Gibbs sampling algorithm
Input: P (x|h) and P (h|x)
Output: Samples from the model distribution P (x,h)
Initialize the input neurons x with data vector x0

t = 0

while True do
Sample from P (ht+1|xt)
Sample from P (xt+2|ht+1) , and denote the sampled visible vector as xt

if the distribution reach equilibrium then

break
end if

end while

Choose the xtth sample as the sample from the model distribution

the conditional form P (x|h) and P (h|x) until reaching the equilibrium distribution. The
detailed Gibbs sampling algorithm is shown in algorithm 1.

Note that, similar gradient information can also be obtained similarly when the other
Boltzmann machine is modeled. For instance, for conditional restricted Boltzmann machine,
the gradient information for parameters θ is

∂L(θ)
∂θ

=

〈
∂ − E(x,h;y)

∂θ

〉
P (h|x,y)

−
〈
∂ − E(x,h;y)

∂θ

〉
P (x,h|y)

where we can still do the Gibbs sampling on the model distribution P (x|y) for the approxi-
mation of the gradient information.

Even though the Gibbs sampler can reach equilibrium distribution in a finite number of
iterations, the sample obtained from the Gibbs chain is far from ideal [29]. The samples from
the equilibrium distribution generally have high variances, and the high variance usually
swamps the model’s distribution. Therefore, the actual learning process for Boltzmann
machine using Gibbs sampler cannot be carried out efficiently due to this poor nature.

2.8.2 Contrastive Divergence

Due to the limited sampling results of Gibbs sampling in training the Boltzmann machine,
an efficient and feasible learning algorithm called contrastive divergence is proposed by Hin-
ton [29].

Contrastive divergence is a general learning algorithm for energy-based models, including
Boltzmann machines. The basic idea is to use the samples from the k finite step Gibbs
sampling to approximate the target distribution.

The main problem in the pure Gibbs sampling is that the samples from the equilibrium
distribution in the Gibbs sampler have too high variances, overwhelming the true target
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Algorithm 2 Contrastive divergence algorithm
Input: P (x|h), P (h|x) and K
Output: Samples from the model distribution P (x)
Initialize the input neurons x with data vector x0

t = 0

while t <= K do

Sample from P (ht+1|xt)
Sample from P (xt+2|ht+1), and denote the visible vector as xt

end while

Choose the xtth sample as the sample from the model distribution

distribution. However, if one initializes the Gibbs chain with the data vectors in the distri-
bution, the samples from the kth step of the Gibbs sampler have already made some changes
from original data points, which is the error information that is needed for the learning the
target model. In practice, one can perform the contrastive divergence according to the algo-
rithm 2. It is also experimentally confirmed that even 1 step of Gibbs sampling is enough
for learning a successful target distribution using RBM. Moreover, while doing the actual
sampling, the sampling approach can be replaced by the mean-field approximation [58] [45].

The contrastive divergence was proposed to mainly cope with the learning of product
of expert models, and then mainly used in learning variants of Boltzmann machines (e. g.
see [31] [61] [55] [30]). Although there are lots of large scale applications of the learning
algorithm in various fields, there is still room for improvement in terms of learning a good
generative models. The main flaw of the contrastive divergence is the initialization of a new
Gibbs chain. Every single update based on the learning instances can be too arbitrary and
ignore the learned information from the previous updates. For overcoming this theoreti-
cal weak point, several notable algorithms are proposed: Persistent Contrastive Divergence
which is aimed to tackle the arbitrary initialization in contrastive divergence for every up-
date, and parallel tempering which is aimed to tackle the arbitrary initialization problem by
the multiple Gibbs sampling chains.

2.8.3 Persistent Contrastive Divergence

Due to the success of the contrastive divergence and some theoretical weak points of the
algorithm, a better algorithm called persistent contrastive divergence [64] is proposed to
extend the excellent learning properties of contrastive divergence. A further extension and
speed-up of the algorithm was proposed later in [65].

The model is proposed because the changes in the model between each update are small
and reseting the Gibbs chain will harm the actual learning. Therefore, persistent contrastive
divergence is proposed to use a single Gibbs chain throughout the experiment and to use the
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estimated value of previous update as the current initial point of the Gibbs chain, and then
further do the training in each step.

A series of experiments confirmed that the persistent contrastive divergence can learn a
better model given the same computation power and time. A speed-up version of persistent
contrastive divergence was proposed later [65]. This algorithm is omitted here because the
persistent contrastive divergence is not studied in this thesis.

2.8.4 Enhanced Gradient Learning

One big drawback of the contrastive divergence is that it is not guaranteed to converge to the
true distribution, but rather it converges to a biased model distribution [12]. Even though the
bias is rather small in practice, it is however good to have a better solution. Therefore, Cho
et al. [15] proposed an enhanced gradient algorithm that has better generative modeling
learning capabilities. In addition to that, the enhanced gradient learning algorithm also
simplifies the choice of the learning parameters by introducing the adaptive learning rate for
the RBM training.

Cho et al. [15] argued that the traditional restricted Boltzmann machine learning algo-
rithm is biased in terms of data representations, and has difficulties in focusing on learning
meaningful feature sets due to the biases. By defining the covariance between the visible
neurons and hidden neurons under the arbitrary distribution P ,

CovP (x,h) = 〈x,h〉P − 〈v〉P 〈h〉P (2.17)

the traditional gradient information of wij is written as

∇wij = Covd(xi, hk)− Covm(xi, hj) + 〈xi〉dm∇cj + 〈hj〉dm∇bi (2.18)

where 〈·〉dm is the average of the expectation of the variables over the data distribution and
the model distribution. From the previous formulation, it is clear that the bias terms are
involved in updating the feature sets. The effects can be dominant when large amount of
hidden neurons are active, neglecting the information from other sources. To cope with
this problematic fact, a new learning rule called the enhanced gradient learning algorithm
for Boltzmann machine is proposed. The effects from the bias terms can be neglected if
the expectation of input neurons x over the distribution P is close to zero. From this
perspective, the new learning rule of the enhanced gradient learning rule combines all the
possible combinations of bit-flipping transformations so as to produce a new less-biased
learning rule, which is defined by the gradients,

∇wij = Covd(xi, hk)− Covm(xi, hj)

∇bi = 〈xi〉d − 〈xi〉m −
∑
j

〈hj〉dm∇wij

∇cj = 〈hj〉d − 〈hj〉m −
∑
i

〈vi〉dm∇wij

(2.19)

These update rules are more elegant in terms of removing the biases from the input data to
the gradient information of feature sets. For the detailed derivation, please see Cho’s thesis3.

3http://lib.tkk.fi/Dipl/2011/urn100427.pdf
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In addition to the aforementioned enhanced gradient learning rules, a new adaptive
learning rate selection scheme is also proposed to ease the learning of the deep models.

We assume θ and θ′ are the parameters for the deep model, and θ′ denotes the parameters
after one update of θ. If the change between the two updates is minimal, we can assume the
following equality,

Pθ′(x) =
Pθ(x)

Zθ

Zθ
Zθ′

(2.20)

where Pθ′(x) is the model distribution given the parameter θ′, and Pθ(x) is the model dis-
tribution given the parameter θ. Zθ′ and Zθ are the corresponding normalization constants.
According to the definitions of normalization constants in deep model, the previous equality
can be further expanded to

Pθ′(x) =
Pθ(x)

Zθ

Zθ
Zθ′

=
Pθ(x)

Zθ

〈
Pθ′(x)

Pθ(x)

〉−1
Pθ

(2.21)

From the new formulation, we can actually compute the local likelihood by literally utilizing
the positive and negative gradient obtained by the learning procedure. To select the most
appropriate learning rate, the one that gives the best log-likelihood values is selected. In
order to minimize the additional computational time because of selecting the better learning
rate, and also to eliminate the potential fluctuation of learning rate throughout the learning,
a potential set of learning rate is {(1− ε)2η, (1− ε)η, η(1+ ε)η, (1+ ε)2η}, where ε is a small
value, often selected ε = 0.01.

2.9 Conclusions
In this chapter, we introduced and reviewed a series of different Boltzmann machines and
their learning algorithms. Different Boltzmann machines are developed to perform different
tasks, for instance, restricted Boltzmann machines for modeling binary input vectors in
hidden binary vectors, and gated Boltzmann machines for modeling the interactions between
two sets of input vectors in single hidden neurons. These differences make the applications of
deep networks fairly broad, and a number of applications have been developed and discussed
in the past years.

To overcome the difficulties of learning the energy model like that in Boltzmann machines,
a milestone was achieved when Hinton proposed the initial contrastive divergence algorithms.
Afterwards, various authors have been trying to improve the learning algorithms, resulting
in several enhanced learning schemes, such as the persistent contrastive divergence, fast
persistent contrastive divergence, and the enhanced gradient learning.

In spite of the vast development of this sub-field of machine learning, there are still lots
of barriers in exploring full potentials of deep networks. A series of possible future directions
are possible.
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Chapter 3

Background on Texture Modeling

3.1 Texture Modeling
Texture information modeling has been studied for decades, see, e.g., [27]. It can be un-
derstood by considering combinations of several repetitive local features. In this manner,
various authors proposed hand-tuned feature extractors. Instead of understanding the gen-
erative models for textures, those extractors try to consider the problem discriminatingly.
An old model called co-occurrence matrix was proposed in [27], where it was used to measure
how often a pair of pixels with a certain offset gets particular values, thus tackling the struc-
ture of the textures. Despite the good performances of these extractors, they suffer from
the fact that they contain only little information about the generative model for textures.
Also, these extractors can only be applied to certain type of data, and it is fairly hard to
adopt them to other tasks if needed. Conversely, generative models of textures can be ap-
plied to various texture modeling applications. In this direction, some statistical approaches
for modeling textures have been introduced in [66] and [42]. A pioneering work of texture
modeling using deep network is proposed in [36].

Texture modeling is a very important task in real-world computer vision applications. An
object can have any shape, size, and illumination condition. However, the texture pattern
within the objects can be rather consistent. By understanding that, one can improve the
understanding of objects in complex real-world recognition tasks.

3.2 Texture Classification
Texture can in general be treated as repetitive patterns where different ones of them resemble
certain of types of textural information. Textural information is included as one of the
basic properties of objects. Other properties include shapes, size, color, and reflections.
Sometimes, while the other properties of the objects vary dramatically, the textures of objects
can remain rather consistent. For instance, in a construction site, the remains of different
materials can be found in any shape, and it is also likely that the objects are occluded
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Figure 3.1: An illustrative example of the texton used in texture classification [67].

by other objects. For a successful recognition application, it might be crucial that the
recognition system is capable of capturing the object by the textural information of the
different objects.

One of the most widely studied subject for texture modeling is its classification problem.
In real life, people mostly need to categorize different types of textures, such as trees, grass,
etc. Texture classification studies can essentially be divided into the following periods:

Early Research Period Early research on visual patterns are conducted in [34] [33]. In
these papers, the main research goal was to investigate how textural patterns are
of importance in visual systems. For instance, Julesz [33] discussed in which ways
different textures are discriminant to the human vision. In the same publication,
the same author proposed that texture cannot be discriminated if the second-order
statistics are identical in two different textures, and then proved the statement false in
his later publication in [34]. More importantly, a very important local feature extractor
called texton is proposed to tackle the textural information discrimination tasks. The
texton have been a main stream for most of the texture classification algorithms until
some other statistical methods were proposed in recent years. An example of textons
is shown in Figure 3.1.

Binary Texture Classification The actual texture classification research started with bi-
nary textures. This is one of the simplest form of texture comparing to other complex
textures with different perspectives. Binary textures are binary visual patterns re-
sembling different visual perceptions. Clearly, in binary texture images. each pixel
has typically only two states: black and white. Béla Julesz developed a series of
theorems on how textural information can be discriminated using different statistical
information in [34] [33]. Some further theoretical textural discrimination algorithms
were studied in [44]. Binary texture classification serves as a theoretical foundation
and starting point of the real world textural information research.

2D Texture Classification Soon after the introduction of the digital scanner and the
digital cameras, there exists a massive amount of grey-level textures images that cannot
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be studied using the simple binary texture discrimination methods. Some of the
representative work includes [26] [25] and [60]. In these works, all the methods strived
for coping with the texture with different rotations, scaling transformation. As all the
possible transformations are in two dimensional plane, this category is often called 2D
texture classification.

3D Texture Classification To advance the texture recognition and classification in com-
puter vision, it is crucial to understand how the 3D transformation can be compen-
sated in the field of texture classification. In real world problems, the form of textures
appearing in the real world data set are so arbitrary that those simple 2D texture clas-
sification methods cannot perform well enough. From this perspective, a few represen-
tative work including [6] [17] [37] [41] [59] [66] [67] are proposed to tackle the problem.
One of the most recent advances was to use the random projection method [42] to pro-
duce a random low dimensional representation of the texture. This method is much
simpler than the previous methods but yet outperform the previous methods.

3.3 Texture Reconstruction
Texture synthesis is a different application where the objective is not to differentiate between
the textures, but to generate textures based on some criteria. Texture synthesis is an inter-
esting problem as it involves a true understanding of the texture, and then re-generation of
similar or identical textures based on the learned model. Typical discrimination methods
don’t work in this application as they barely understand the structures of the textures, but
only know the discriminative features from one another. On the contrary, in general, statis-
tical approaches to texture modeling can have texture synthesis properties as the methods
are developed to understand the nature of the different textures. For instance, in [66], the
author experimented with the texture synthesis with their texture modeling methods by
learning explicitly the probability distribution of the textures.

Another similar texture synthesis example comes from [23] where the authors proposed
to model the conditional distribution of a pixel given the other nearby pixels. This method
is different from the aforementioned method because it didn’t learn explicitly the probability
distribution of the texture, but learned a conditional Markov random field and then tried to
minimize the corresponding energy model.

The latter approach is similar to deep network in terms of utilizing the energy model.
Deep network often uses a building block called restricted Boltzmann machine or its variants
such that it can learn a highly informative feature representation of the input vectors. Due to
the restricted structures of the different proposed Boltzmann machines, we can re-generate
textures by sampling from the hidden neurons. Additionally, the highly informative textural
feature sets are highly likely to provide better classification results comparing to raw pixel
classification using the conventional classifier such as k-nearest neighborhood classifier.

In this thesis, a new possible way of modeling texture is proposed such that the model
can have a good texture classification model yet preserving good generative models of the
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textures. Before going to the detailed explanation of the proposed approaches, some basic
texture classification methods are introduced in the next section.

3.4 Common Texture Modeling Methods
In this section, some typical texture modeling methods are reviewed. The algorithms are
reviewed because of their important contributions to the texture modeling and computer
vision, and also due to the fact that the reader can have a better perspective about the
texture modeling field if the following methods are understood. The previous methods
are divided into two sub-sections according to the nature of methods: if they utilize the
statistical properties of the textures, the methods are counted as statistical approaches,
and if not, then the method is classified into non-statistical approaches. Typically, in non-
statistical approaches, methods like gray level co-occurrence matrices are included. On the
other hands, methods like texture classification using random projections are included in
statistical approach as they all utilize the statistical properties of textural information.

3.4.1 Early Stage Approaches

Early stage approaches generally utilize the early conventional feature extraction methods
such as the gray level co-occurrence matrices.

Co-occurrence Matrices in Texture Modeling

Co-occurrence matrix [27] measures the frequencies of a pair of pixels which with a certain
offset get particular values. Modeling co-occurrence matrices instead of pixels brings the
analysis to a more abstract level immediately, and it has therefore been used in texture
modeling.

The co-occurrence matrix C is defined over {m×n} size image I, where {1 . . . Ng} levels
of gray scales are used to model pixel intensities. Under this assumption, the size of C is
{Ng ×Ng}. Each entry in C is defined by

cij =

M∑
m=1

N∑
n=1

1 if I(m,n) = i & I(m+ δx, n+ δy) = j

0 otherwise
(3.1)

Different offset schemes for {δx, δy} result in different co-occurrence matrices. For instance,
one can look for textural pattern over an image with offset {−1, 0} or {0, 1}. These different
co-occurrence matrices typically have information about the texture from different orien-
tations. Therefore, a set of invariant features can be obtained by having several different
co-occurrence matrices concatenated together.

Feature extractors related to the basic co-occurrence matrix include gray level difference
histogram, Markov random field, gray level run length histogram, etc. The aforementioned
methods all try to extract a set of compact yet highly meaningful feature (histogram) to
distinguish between different textures.
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Multi-Dimensional Histograms in Texture Modeling

The introduction of Gabor filters, and wavelets stimulated the further development of texture
modeling using more complex image features. The methods can be summarized into multi-
dimensional histograms as the images are often scaled to different level, and features are
concatenated from multiple scaled images.

One of the most influential feature extraction method is called the local binary pattern,
proposed in [54]. Its invention made a wide range of success in textural analysis due to the
following two reasons:

• The method is computationally extremely light and simple, which shows the possibility
of performing the calculations in real-time applications.

• The extracted binary features from the gray level texture images are extremely ex-
pressive in a compact vector, and thus made the method achieve high performances
in texture analysis.

The local binary pattern was first developed to deal with textural images, and then expanded
into various fields such as face recognition, etc. The original local binary pattern is defined
over 3 × 3 pixel regions where the surrounding pixels over the center pixels are compared.
First, the center pixel values are subtracted from the nearby pixels. Second, the surrounding
pixels are binarized by setting the value of surrounding pixels to zero if the remaining values
in that pixel is negative, one otherwise. Third, the binarized pixels are encoded by the
multiplication of the power of 2 sequentially and then consequent values are added together.
Eventually, the histogram of the calculated local binary patterns in the images are used as
the features of the certain textures.

Furthermore, after the introduction of the original local binary patterns, various vari-
ants and extensions are developed to further explore the characteristics of the local binary
patterns. One of the extensions is to compute the local binary patterns in an arbitrary
distance; another extension is to compute the spatial-temporal local binary patterns in 3-D
dimensional space.

3.4.2 State-of-the-Art Approaches

In recent years, there have been lots of advancements in the statistical modeling of con-
ventional machine learning problems and methods. For instance, instead of hand-crafting
features in computer vision, the deep network has been used to learn the natural feature rep-
resentations of the object, and a series of state-of-the-art performances have been achieved
in various complicated machine learning problems. This trend has also largely influenced
texture modeling where the local information in the textures are vastly investigated. The sta-
tistical textural analysis is more robust in terms of the arbitrary viewpoint, and illumination
changes. When the changes in the textural information provide 3-dimensional information,
this type of textural classification is often called 3-D texture classification methods.
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Filter Based Texture Classification

Given a class of textures, the task is generally to categorize the new textures into a pre-
trained texture category. Therefore, in [67], the author proposed a series of standard texture
classification methods based on the frequency responses of the textural information. To
compute the feature sets from the texture, in training step, each texture is convoluted with
a pre-defined set of filters, and then several clusters are formed using the k-means algorithms
over all the filtered textures. The cluster centers are recorded and called textons accordingly.

In the testing step, the new texture images are then also filtered by the same set of filters,
and categorized into the class using K-nearest neighbor classification.

In the whole process, one of the most important matters is to select the correct filters.
The filter should be able to extract invariant features in terms of illumination, rotation,
view-point changes, etc. Therefore, in [67], a rather successful texture filter bank called the
maximum response filter sets is proposed. In the set, there are in total 38 different filters but
only 8 filter responses. The texture filter bank consists of a Gaussian filter, a Laplacian of
Gaussian filters, and 12 different edge filters with 3 different magnitudes. The visualization
of the filters is shown in Figure 3.1.

Many different textures filters have been introduced in the literature. For more details,
please see [67].

Filter Free Texture Classification

Filter bank methods are excellent in terms of texture classification. However, due to the
complex procedure of the selection of texture filter banks, it should be ideal not to choose
any filter bank but directly operate on the raw pixels. Under this perspective, a new texture
classification method purely based on the texture patches is proposed in [66] where the filter
banks are replaced by the clustered samples of patches of texture images.

While leaving most of the procedures of texture classification the same as that in the
previous methods, the texture processing procedure is different: instead of filtering the
texture images, a large set of texture patches are extracted from the images, and then some
cluster centers are recorded for the large collections of texture patches. Consequently these
cluster centers are treated as the new textons used for the texture classification.

The new approach is better in terms of the texture classification performance, while
making the feature set smaller.

Random Projections in Texture Classification

In recent years, texture classification methods are further developed to analyze textural
information using the state-of-the-art statistical approaches: Compressed sensing [22] and
deep network [51].

In [36], a pioneering work on analyzing the textural information using the implicit mixture
of Boltzmann machine is proposed. This method is great in terms of modeling complex
generative models of different textures. Accordingly, the proposed method is extremely
expressive in terms of generation of different texture images from scratch.
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In [42], recently developed random projection methods are utilized in texture modeling.
The proposed methods are capable of achieving a compatible state-of-the-art classification
performance while preserving a small sized feature representation.

3.5 Texture Data Sets
Similar to the other computer vision research fields, there are also standardized data sets
that are utilized in the field of texture modeling. During the different stages of textural
information research, the following data sets in the literature have been widely used: the
Brodatz texture data set, the KTH-TIPS (2) textural data set, the UIUC texture dataset,
and the Columbia-Utrecht texture dataset. These data sets all resembles the rich diversity
nature of texture by including varieties of different textures. Different textures also differ
from the each other by the emphasis each data set presents.

Brodatz texture data set is the one of the oldest texture datasets that has been used in
all the major texture modeling research. The Brodatz texture collection was first published
in a graphical collection in [7] and then re-published in [8]. It contains 111 different texture
images, and there is only one image for each texture class. For each texture image, there are
no changes in illumination, view point, and affine transformations. Therefore, the Brodatz
texture dataset is one of the simplest texture datasets. As there is only one texture image for
each class, the trained texture classifier might not really generalize to other similar texture
images in the same class. In a typical texture classification experiment, each image is divided
into identical 9× 9 subimages, and 5 of them are used to generate training patches, and the
rest is used to generate testing patches. The aforementioned experiment is also used in this
thesis.

One of the example patches for Brodatz texture images is to use a sub-collection of 24
images. These images are collected to prevent the some ambiguities in the original collections.
Brodatz24 data sets are shown in Figure 3.2. There is only one image in each class, and thus
in total there are 24 images.

KTH-TIPS (2) texture data set contains more variations. In each texture class, there
are samples representing different illumination, pose, and scaling changes. This texture data
set is more realistic in terms of considering the actual environmental changes in texture
modeling. There are two different versions of KTH-TIPS dataset: one is the original data
set, and other one is the superset of the original KTH-TIPS2 texture dataset which added
some missing figures in the original texture dataset. Therefore, in real use, the KTH-TIPS2
data set is always used for its completeness. For clarifications, TIPS itself represents Textures
with varying Illuminations, Poses and Scales.

In the KTH-TIPS2 data set, 11 different texture materials are sampled from different
illuminations, poses and scales. For each texture, there are in total 108 different images,
and each sample image is cropped to 200 × 200 size. Differently, in my experiments, half
of the images are used to generate training samples, and the other half is used to generate
the testing samples. A recent citation of the dataset appears for instance in [11]. A sample
collection of KTH-TIPS2 is shown in Figure 3.3.
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Figure 3.2: A subset collection of 24 images from Brodatz database [42].

UIUC texture database is yet another complicated texture dataset widely accepted as a
standard texture modeling benchmarking data set. The texture dataset was introduced and
first used in [39]. There are in total 25 different classes, and 40 images for each classes. Every
image is grey-scaled with size 640 × 480. The significant changes in view-point and scales
made the data set much more complicated than the Brodatz texture data set. UIUC texture
is complicated in terms of the viewing angles, illumination changes. A sample collection of
data set is shown in Figure 3.4

Last but not least, CUReT texture data set, or the Columbia-Utrecht data set, is one of
the most comprehensive data sets for texture modeling. It was first introduced by a group of
researchers in Columbia university and Utrecht university and published in [20]. There are
in total 61 different surfaces being recorded in 92 different sample images. There are wide
ranges of changes in illuminations, poses, etc. The CUReT data set is only used in validating
the learning algorithms. A sample collection of several different textures in CUReT data set
is shown in Figure 3.5.

3.6 Conclusion
Texture is a natural information on how the objects are presented in the world. In most
cases, despite the change of the shape, illuminations, orientations, the texture information
is consistently present among various similar objects. Given these facts, there has been
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Figure 3.3: A subset collection of KTH-TIPS2 database.
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Figure 3.4: A sample collection of UIUC database [66].
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Figure 3.5: A sample collection of CUReT database [42].
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enormous amount of research on how to represent, illustrate, recognize, and reconstruct
the textural information for different objects. Among various texture learning algorithms,
some of the most successful approaches are the statistical approaches. Simple statistics like
co-occurrence matrices are already informative enough for recognizing the different textures
in 2D settings. However, in order to increase the recognition capabilities, more advanced
methods such as random projection, and recently restricted Boltzmann machine are applied.
These methods are much more promising as they are more tailored to understand the com-
plicated relationships between local textural information by exploring the interactions within
the local patch.

This work is a new attempt to understand how the textural information can be un-
derstood using the local features of the texture by applying a convolutional higher order
Boltzmann machine. Different from the previous approaches, we have a strong concentra-
tion on how the different pixels interacts, and only consider local interactions.
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Chapter 4

Convolutional Gated Boltzmann

Machine in Texture Modeling

4.1 Statistical Modeling in Computer Vision
Statistical modeling provides advantages in many machine learning problems. Comparing to
the explicit modeling of the data, in recent years, statistical modeling provides flexibilities in
modeling different types of data in a unified framework. In the conventional computer vision
approaches, a series of hand-crafted features are designed for the extraction of the invariant
features. Even though some satisfactory results have been achieved, these results are easily
beaten by the natural features extracted from the objects using deep networks, for instance,
in recognition of hand-written digits.

Therefore, in this work, following the recent work of modeling the texture using the
implicit mixture of restricted Boltzmann machine [36], we propose to model the textural
information using a convolutional gated Boltzmann machine, where features from different
types of textures are controlled by the hidden variables. Different from the previous work,
we don’t need to learn class-specific features before mixing all the features. Instead, all the
raw samples from different textures are fed to the learning machine, and a set of meaningful
features will be presented in a reasonable learning time.

In the following chapters, we review the connection between our model and other higher-
order Boltzmann machines, and then explain the detailed procedures designed for the pro-
posed model.

4.2 Multi-view Feature Learning in Texture Model-

ing
Our model is based on the higher-order Boltzmann machine and the convolutional Gaussian
restricted Boltzmann machine, both of which are explained in Chapter 2. The higher-order
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Boltzmann machine is a new type of Boltzmann machine which tries to model the higher-
order features in the interactions between two data vector x and y. In the typical gated
Boltzmann machine, the interactions terms

∑
ijk xiyjhkwijk are the key to learn the features.

The tensor wijk connects the interacting features between xi and yj of data vectors x and y

in hidden variables hk. As the analytical conditional forms are still preserved, the inference
in the model can be extremely fast. However, learning becomes extremely hard because the
number of free parameters in the tensor wijk increased dramatically w.r.t. the size of inputs.
To cope with this, a factorization scheme is proposed

wijk →
∑
f

wxifw
y
jfw

h
kf

In this way, the number of free parameters is reduced dramatically. However, this factoriza-
tion actually gives rise to another problem: while feeding the same patches to x and y in
some learning problems, as we have different sets of weight matrices for x and y, the samples
from the model distribution can hardly reflect this situation.

4.3 General Gaussian Gated BoltzmannMachine: Re-

visited
Our approach stems from a simple intuition: the local interactions between nearby pixels are
far more important and dominant so that one can basically ignore the far away pixels to some
extent. In order to dive into this, a bottom-up approach is taken to build an appropriate
energy function to describe the interactions. Before that, a more detailed explanation of
general Gaussian gated Boltzmann machine is presented.

Figure 4.1 shows a simple example of undirected graph about the relationship between
pairs of input vectors and the hidden vectors. In addition to the Gaussian gated Boltzmann
machine, there are terms to specify the relationship between the input vectors. In other
words, every node is inter-connected by an undirected graph.

However, this general model is too general to be used for modeling texture. Given two
image patches, not all the interactions even make sense. For instance, it doesn’t seem to be
useful to consider the interactions between pixels that are far away enough from each other,
e.g., pixels from two corners.

A standard general Gaussian gated Boltzmann machine can be defined as

E(x,y,h) =−
∑
ijk

xi
σi

yj
σj
hkwijk −

∑
ij

xi
σi

yj
σj
uij +

∑
i

(xi − bxi )2

2σ2i

+
∑
j

(yj − byj )2

2σ2j
−
∑
k

hkck −
∑
ik

xi
2σ2i

hkv
(1)
ik −

∑
jk

yj
2σ2j

hkv
(2)
jk

(4.1)

where uij , v
(1)
ik and v(2)ik are additional parameters to model the pair-wise connections between

two sets of visible neurons {x,y} and hidden neurons h. Both x and y are considered to be
Gaussian variables. The formulation is actually identical to the Boltzmann machine where
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Figure 4.1: The graphical illustration of general gated Boltzmann machine

there is no distinction between visible neurons and hidden neurons. What’s different here,
is that we explicitly wrote out three sets of neurons, each having a special meaning.

This explicit formulation inspired us to dive into the formulation of the local interactions
of the neurons by considering a convolutional model within the pairs of visual neurons.

4.4 Convolutional Gated Boltzmann Machine
Combining the nature of texture information and Gaussian gated Boltzmann Machine, a
modified Gaussian gated Boltzmann machine especially suitable for texture modeling is
proposed. The proposed method is particularly suitable for capturing the local relations
within image patches. One can argue that modeling explicitly the relationship between pairs
of pixels can be potentially beneficial in texture modeling.

To start with, we consider a slightly modified general gated Boltzmann machine where
there are pairwise connections between all sets of nodes. This model has the most compre-
hensive information about the input vectors. Accordingly, the energy function of the model
is

E(x,y,h) =−
∑
ijk

xi
σi

yj
σj
hkwijk −

∑
ij

xi
σi

yj
σj
uij +

∑
i

(xi − bxi )2

4σ2i

+
∑
j

(yj − byj )2

4σ2j
−
∑
k

hkck −
∑
ik

xi
2σ2i

hkv
(1)
ik −

∑
jk

yj
2σ2j

hkv
(2)
jk

(4.2)

Similarly, where uij , v
(1)
ik and v(2)ik are additional parameters to model the pair-wise connec-

tions between two sets of visible neurons {x,y} and hidden neurons h.
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It is clear that, the modified general gated Boltzmann machine has similar structure as
the original one, but with a few modifications. These changes are made to ease the derivation
in the later section only, and the properties of the Boltzmann machine should remain the
same. From the above energy model, it is shown that the interactions between two input
vectors are counted. Additionally, each input vector and the hidden vector should have
bias terms. As before, the general gated Boltzmann machine is too general for representing
textural information given the difficulties arising in for learning such models.

Instead, given our assumptions about the data and problem, there is actually a lot
of room for streamlining the model. In our context, we are aiming to look for the inner
relationship within the images, and this results that the input vectors x and y are actually
getting the same input. Besides that, given the fact that x and y are actually requiring
the model to feed same input, the characteristics of the two input vectors should also follow
some conventions: they should share the same variance; they should have the same mean
value.

From this direction, several crucial simplifications and omissions have been done to make
the general gated Boltzmann machine meaningful and useful yet preserving the abilities to
model the relationships by this particular model. In the following paragraphs, the detailed
modifications and reasons are addressed.

Instead of looking for the image transformation, we seek for the internal structure of
texture information. Therefore, the same patch of image is fed to the two sets of visible
neurons, that is x = y. Accordingly, the weights v and bias b for the two sets of visible
neurons are tied, which is

V = V(1) = V(2) ; b = bx = by

Also, a unified variance
σ2 = σ2i = σ2j

is learned to reduce the complexity of the model further. This simplifications reduced the
energy function 4.2 to

E(x,y,h) = −
∑
ijk

xi
σ

yj
σ
hkwijk −

∑
ij

xi
σ

yj
σ
uij −

∑
k

hkb
h
k +

∑
i

(xi − bxi )2

2σ2
−
∑
ik

xi
σ
hkb

xh
ik

where the formulations are much clearer and representative. We can come to the conclusion
that the formulation is actually a combination of two different models: a normal Gaussian
restricted Boltzmann machine and a higher order Boltzmann machine characterized by the
triplet terms. This actually gave us quite a lot of inspirations about how we should continue
our optimization and simplification. In a recognition task, it doesn’t really matter if one
actually learns the exact model, as long as the approximated model is capable of producing
a set of meaningful features that distinguishes different objects. Therefore, in the following
sections, there is a further discussion on how the whole modified general gated Boltzmann
machine is useful in terms of modeling the relationship within the images.
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4.4.1 Convolutional Transformation in GGBM

The complexity of the model remains as the weight tensor wijk still needs huge learning
efforts. As x = y, the inputs xi and yj can be considered a pair of pixels, and the hidden
neurons hk are learned to model this interaction. Given an image patch, the traditional
Gaussian gated Boltzmann machine will go through all the combinations of such pairs. This
is highly redundant as the texture is repetitive within a very small region. Recalling that
co-occurrence matrix tries to summarize the interaction of pairs of pixels over a certain area,
this structure can be introduced to Gaussian gated Boltzmann machine. d represents the
max offset distance vector from the center xi to a nearby pixel in a grid of {d, d}. Please
note that we only include terms where pixel yi+d stays within the image patch.

The distance constant d is defined particularly to force the modeling of the interaction
between different pixels in a tiny local area. In quite a few experiments, d is defined to be
not larger than 20, while the image size can actually be arbitrarily big. This idea follows
seamlessly with the previously proposed convolutional restricted Boltzmann machine, where
the number of the hidden neurons is rather limited to constrain the learning efforts on the ac-
tual local area. In convolutional restricted Boltzmann machine, there are K different hidden
neuron sets with size smaller than the actual image patch sizes. Given our model and the
local concentration, a set of hidden vectors are also present in our model to capture the mul-
tiple features in a single setting. Similar to the convolutional restricted Boltzmann machine
where the weight matrix W is shared between different hidden neurons, we also achieved
this characteristics, which is derived in detail in the following chapters. This formulation has
multiple benefits regarding the learning of the model and interpretation. Given a smaller
weight matrix, the number of the free parameters shrank to a small amount, and such that
the learning is easier, and less dangerous to over-fit. Additionally, as most of the data we
are now facing has a strong manifold structure, it is essentially important to understand
the structure of the data. The way the local concentrations are considered in our model
forces the model to only consider the local distance. This follows the manifold properties
where only the local distance is valid. Different from the convolutional restricted Boltzmann
machine, the dimensionality of the weight tensor in our model is also decreased to 2, which
made the whole implementation much easier.

In the following paragraph, the simplifications and derivations are addressed. We will
assume

wijk → wdk

such that the weight wijk depends only on the displacement d and the hidden neuron hk. d
represents the offset from i to j. Similarly,

uij → ud

One can think of wdk and ud as a convolutional model only over the local regions in image
patches. Convolutional approximation has been argued to be rather successful in other
applications such as image recognition tasks [40]. It is further assumed that wdk = 0 for
large displacement d. As the size of the image patches is often larger than the size of the
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d× d, the weight vector Wdk is shared between different location of the image patches, and
thus forcing the number of free parameters to a normal level.

After these simplifications, the energy function (4.2) becomes

E(x,y,h) =− 1

σ2

∑
ijk

xiyjhkwdijk −
1

σ2

∑
d

xiyjudij +
1

2σ2

∑
i

(xi − bi)2

− 1

σ2

∑
ik

xihkvik −
∑
k

hkck

(4.3)

Learning and inference of Gaussian gated Boltzmann machine can be based on sequen-
tially sampling from the conditional distributions p(x|y,h), p(y|x,h) and p(h|x,y). As x is
assumed to have the same image patches as y , p(x|y,h) = p(y|x,h) should be enforced.

These conditional forms can all be written in closed forms as

p(y|x,h) =
∏
j

N

(
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hkvjk, σ
2
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2
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1

1 + exp
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− 1
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σ2
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j yjvjk −

1
σ2

∑
ij xiyjwijk − chk

) .
(4.4)

However, simply alternatively sampling from the conditional probability distribution
can hardly make learning to progress further. The reason is that the prerequisite that x

should have the same fantasy particles y, can be be satisfied on every iteration as there
is no enforcement about this constraint in the conditional forms. Therefore, to make the
learning simple yet effective enough, some approximation is made based on the similarities
between this model and other existing models. Such an approximation is made that, the
learned features from the approximated model can actually represent the original model well
enough, therefore the learned features can directly be used on the original model, and this
is partially proved by the texture reconstruction experiment.

In the next subsection, the approximation and derivations are introduced. Note that
all the approximations and simplifications are empirically shown to be correct. The more
detailed experiments are present in next chapter.

4.4.2 GRBM with Preprocessing Units

By considering the simplified model of the combinations of the normal Gaussian restricted
Boltzmann machine and some other additional terms, our model can actually be simplified
to be learned by a Gaussian restricted Boltzmann machine.

Essentially, we are now modeling the textural information and its local interactions by the
proposed convolutional gated Boltzmann machines. Therefore, we can actually consider pre-
processing the inner relationship terms in a sensible way such that the proposed model can
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be modeled by a Gaussian restricted Boltzmann machine. To this end, several modifications,
addressed below are made.

Firstly, we define auxiliary variables

td =
∑
i

xiyi+d

where d is the offset between pixels i and j as before. This formulation stems from the
principle of the co-occurrence matrix where each feature is only related to particular pairs
of pixels in the image. These computations can be done as a preprocessing step. Secondly,
we learn a GRBM using the concatenation of vectors [x, t] as data. We call this model the
GRBM(X,T) and illustrate it in Figure 4.2. In the figure, the dashed line represents t being
computed from x.

When we write the energy function of GRBM(X,T)

E(x, t,h) = − 1

σ2

(∑
ik

xihkvik +
∑
dk

tdhkwdk

)
−
∑
k

hkck

+
1

2σ2

(∑
i

(xi − bi)2 +
∑
d

(td − ud)2
)
,

(4.5)

we notice the similarities to the GGBM energy function in Equation (4.3). Each parameter
has its corresponding counterpart. The only remaining difference is

E(x, t,h)−E(x,y,h) =
1

2σ2

∑
d

t2d + const (4.6)

t2d is constant in terms of the learning parameters and such that during the learning time, the
difference can be omitted. These facts give us the opportunities to approximate a complex
learning algorithm well enough by considering a much simpler and well-established learning
problem.

It turns out p(h|x,y) can be written in the exact same form as in Equation (4.4). This
approximation makes the learning of the model extremely easy. After the simplifications,
the proposed energy function (4.3) can be written as,

E(m,h) = − 1

σ2

∑
ik

mihkvik −
∑
k

hkck

+
1

2σ2

∑
i

(mi − bi)2
(4.7)

where m represents the concatenation of the x and t. The only difference between
equations (4.3) and (4.7) is that 1

σ2

∑
d tdbd is replaced by 1

2σ2

∑
i,pi=ti

(mi − bi)2. As td is
constant w.r.t. to the learning parameters and bd can be removed by normalization constant
Z, in this particular case, our proposed model can be approximated by a much simpler model.

Since learning higher order Boltzmann machines is known to be quite difficult, we propose
to use this approximated model as a way for learning them. So in practice we first train a
GRBM(X,T), and then convert the parameters

wdk → wijk
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and
ud → uij

to the convolutional gated Boltzmann machine model.
Actually, in texture classification, the converted model produces exactly the same hidden

activations h and thus the same classification results should be expected. On the other hand,
in the texture reconstruction problem, the GRBM(X,T) model cannot be used directly, since
t cannot be computed from partial observations.

We noticed experimentally that the converted GGBM model needs to be further regular-
ized, since the regularizing terms t2d in the energy function of GRBM(X,T) are dropped off
as seen in Equation (4.6). We simply converted wdk and ud by scaling them with a constant
factor smaller than 1, and chose that constant by the smallest validation reconstruction er-
ror. The constant here work as a "normalization" factor in a sense that, we are trying to
minimize the difference between the exact model and the approximated model.

The introduction of the t in the data representation essentially increased our feature
abstraction level while decreasing the complexity of the model. According to the definition
of the t, it represents the local convolutional features in the image patches, and potentially
has a higher representational power than the normal y image patches. While at the same
time, the introduction of t decreased the dimensionality of the weight matrix from a three
dimensional tensor to a two dimensional matrix, which obviously decreases the difficulties of
the learning.

The proposed learning algorithm is explained in summarized in Algorighm 3. In general,
the structure of the proposed model is shown in Figure 4.2. Given a set of input vectors x, a
new view of input vector is obtained in t. Afterwards, Equation (4.7) is trained jointly using
x and t. Eventually, the weight matrix is converted back to original form in Equation (4.3).

Algorithm 3 Texture learning algorithm
Input: input image x0, y0 where x0 = y0. Proposed textural model GGBM(x,y,h),
number of iteration k

Output: The shared weight matrix and vector W and b

feed to GGBM(x,y,h) with x0, y0

compute convolutional feature t from x and y

while iteration smaller than k do

compute P (h|x, t)
compute P (x|h, t) and P (t|h,x)
Update W,b, c, σ by gradient ascent θ ← θ + η∇θ according to update rules
in [14]
continue iteration

end while
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4.4.3 Texture Reconstruction

Generative model is capable of understanding the structure of the target objects. This differs
fundamentally from the discriminative models, because the discriminative models consider
learning discriminative representations of object such that one can easily distinguish them
based on those features.

Therefore, in this section, we introduce an approximate way of reconstructing the textural
information. The idea is that, given a corrupted texture image, the model can generate a
reconstructed texture image based on the corrupted image.

In the proposed model, the image patches are fed to and represented in the model by x

and y. The learned feature representations are stored in h. The feature vector h restores
the generative models of the images along with the weight matrices W and biases b, c in
the proposed model.

Remember that the corrupted image is fed to x and y, Texture reconstruction can be
done by alternatively sampling from P (x|y,h), P (y|x,h) and P (h|x,y). These conditional
forms can all be written in a closed form. The conditional forms are then calculated as

p(y|x,h) =
∏
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)
The detailed algorithm for texture reconstruction is shown in Algorithm 4. The basic

idea is to only update the corrupted pixels in the inference steps while keeping other pixels
the same as before. To obtain better reconstruction, it might be a good idea to use the
average of 100 reconstructed images.

4.5 Conclusions
A new type of convolutional gated Boltzmann machine is introduced. Different from the
previous convolutional gated Boltzmann machine, this particular type of Boltzmann machine
is aimed to modeling the local relationship within image patches, while other models in the
literature purely concentrated on the modeling of the image pairs or the full patch.

Our model is designed in the context of texture analysis. A similar model in texture
analysis, separate Boltzmann machine is learned for each class of textures, and then a mixture
of Boltzmann machine is presented. Clearly, the way they treat the texture problem is that,
different textures have distinctly different texture information. However, due to the fact
that, in the real world, textural information is mixed, and can hardly separate them into
classes before training. Therefore, our method tries to tackle this problem by considering the
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Algorithm 4 Texture reconstruction algorithm
Input: corrupted image x0, y0 where x0 = y0. Proposed textural model
GGBM(x,y,h), number of iteration k

Output: reconstructed image x∞ and y∞

feed to GGBM(x,y,h) with x0, y0

while iteration smaller than k do

compute P (h|x,y)
compute P (x|h,y)
obtain xk,yk by setting the corrupted pixels by the value of P (x|h,y) and the
rest remains the same.
continue iteration

end while

h

x t

Figure 4.2: The schematic illustration of the convolutional gated Boltzmann machine
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texture information as a whole, and let the model to differentiate the difference between the
textures. To do this, a hidden layer h is defined to capture the different local interactions
between pairs of local image patches.

In this chapter, the theoretical analysis and derivation of the model is addressed. In the
next chapters, a few proof-of-concept experiment are carried out on several standard texture
datasets.
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Chapter 5

Experiments using Convolutional

Gated Boltzmann Machine

5.1 Experiment Settings
In this chapter, experiments and their detailed explanations and interpretations are ad-
dressed. The data used in the experiments have been largely used in the previous scientific
literature in textural modeling and deep learning.

Based on the nature of the proposed model, it is trying to learn the generative model
based on the given data. Therefore, the proposed methods are tested on two different tasks.
One is texture recognition. A texture recognizer can be built based on features learned from
the data. For this particular task, the better recognition capability the model produces, the
better the learned model is. Secondly, a texture reconstruction task will be performed to
understand the capabilities of learned generative models in the proposed methods. For this
particular task, one can compare the performance of the model based on the visual outcome
of the model.

In the following sections, the learned feature representations of the textures are compared.
Also, the recognition results and reconstruction results are shown in texture reconstruction
experiments.

5.2 Texture Features
It was mentioned in the previous sections that the model we proposed is capable of capturing
the textural informations in a hidden feature h. In general, one of the most convenient ways
of identifying the learned results of the hidden feature sets h is to visually inspect the learned
feature weight matrix W. By definition, given the length of the input vector as N ×N , and
the length of the hidden vector as K×K, the hidden feature weight vector can be visualized
using a grid of K ×K weight patches with size N ×N .

In our experiment, the size of the image varied, but the size of the hidden features are
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fixed with size 1000. This number has no particular meaning in terms of the selection.
In practice, after the learning, the model is capable of determining the size of the hidden
neurons automatically by omitting the hidden vectors with small enough L2 norm.

In our experiment, the following data sets are used:

• Brodatz24 data set. One of the most standard texture data used in the field of texture
analysis. Each texture only contains one image, and thus the problem is rather simple.

• KTH-TIPS2-A data set. The data set I used here is a subset of the standard KTH-
TIPS2 data, where only the collection A is used in training. The problem is much
harder here as the texture images have rotations, and illumination changes.

• CUReT data set. This is an advanced data set for texture modeling, and can be
treated as one of the most advanced texture data set in the field for now.

• UIUC data set. UIUC data is yet another standard data set used in the texture
analysis.

In this section, the different learned visual filters from different data sets are shown.
Given P (h|x,y) is characterized by the weight matrix W and accompanying b. The perfor-
mances of different methods largely differ between the learned hidden features.

In all our experiments, the size of the image patches is chosen to be 20 × 20. Also, the
displacement distance t is chosen to be 5, such that the size of the local patch is set to 11×11.
Also, the size of the hidden layer is chosen to be 1000. Brodatz 24 data set is the simplest
texture data sets in this experiment. We tried to extract a set of 1000 meaningful hidden
features. As we discussed in the previous chapter, our proposed model is approximated by
a modified Gaussian restricted Boltzmann machine, where only the inputs of the models
are different, namely the raw image patches, the transformed convolutional images, and the
concatenations of the previous two images per sample. The features shown in this section
represents essentially the weight matrix in different models. The weight matrix is used to
characterize the conditional probability P (h|x,y). In Fig 5.1, 1000 weight matrices are
shown for the raw texture image patches. For comparison, Fig 5.2 shows the weight matrix
characterizing for the convolutional image patches. In Fig 5.3 and 5.4, the weight matrix for
characterizing the approximation of the proposed model is compared. It is clearly seen that,
the proposed method is capable of producing a clearer feature representation.

Similarly, feature representation for the KTH data set and the CUReT data set are
shown in Fig 5.5, 5.6, 5.7 and 5.8, as well as Fig 5.9, 5.10, 5.11 and 5.12 respectively. In
all these cases, introducing the convolutional feature representation of the image, gave the
possibility of making the learned feature more distinct, and visible, which potentially made
the recognition ability of the whole system better.

5.3 Texture Classification
One of the main goal of our model is to use it for recognizing unseen texture images as
accurately as possible. Therefore, in this section, a few texture classification comparison
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Figure 5.1: The visual filter learned by a set of normal enhanced Gaussian Boltzmann
machine for Brodatz24 data set
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Figure 5.2: The visual filter learned by a set of normal enhanced Gaussian Boltzmann
machine on the convolutional feature t for Brodatz24 data set
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Figure 5.3: The visual filter learned for the normal image patches x by the proposed
model for Brodatz24 data set
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Figure 5.4: The visual filter learned for the convolutional feature t by the prosed
model for Brodatz24 data set
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Figure 5.5: The visual filter learned by a set of normal enhanced Gaussian Boltzmann
machine for KTH data set
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Figure 5.6: The visual filter learned by a set of normal enhanced Gaussian Boltzmann
machine on the convolutional feature t for KTH data set
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Figure 5.7: The visual filter learned for the normal image patches x by the proposed
model for KTH data set
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Figure 5.8: The visual filter learned for the convolutional feature t by the prosed
model for KTH data set
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Figure 5.9: The visual filter learned by a set of normal enhanced Gaussian Boltzmann
machine for CUReT data set
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Figure 5.10: The visual filter learned by a set of normal enhanced Gaussian Boltzmann
machine on the convolutional feature t for CUReT data set
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Figure 5.11: The visual filter learned for the normal image patches x by the proposed
model for CUReT data set
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Figure 5.12: The visual filter learned for the convolutional feature t by the prosed
model for CUReT data set
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Data Source Experiment Settings

Raw image patches X Perform a L1LR on X

Transformation images T from X Perform a L1LR on T

Combination of X and T Perform a L1LR on [X,T]

Feature F (X) from GRBM(X) Perform a L1LR on F (X)

Feature F (T) from GRBM(T) Perform a L1LR on F (T)

Feature F (X,T) from CGRBM(X,T) Perform a L1LR on F (X,T)

Table 5.1: Texture Classification Settings

experiments are conducted to prove the usefulness of the model. To perform the classification,
our model uses a logistic regression model using the feature extracted from the unseen texture
features which generated from our learned model.

Three publicly available texture data sets are tested. The LIBLINEAR library [24] is
used to build a classifier. In all classification experiments, a L1-regularized logistic regression
classifier (L1LR) is trained. For the feature extraction experiments, one step contrastive
divergence and some regularization parameters1 are used. In all the experiments, 1000
hidden neurons are chosen, and wdk = 0 for all ||d||∞ > 5. For comparison, we conducted
six different classification experiments which are specified in Table 5.1.

The classification results in our experiments cannot be directly compared to other texture
classification experiments as they typical extract a highly complex feature set from the whole
image, while we directly extract features from small patches of textures. In other words, our
model is capable of performing classification even though there is only little information
about the texture, while it is typically hard to extract features if the images are too small
in other conventional texture classification experiments.

Brodatz 24 Data Set

A subset of 24 different textures is manually selected from a large collection of 112 different
textures. Only one large image is available for each class [42]. Each image in each class
is divided into 25 {128 × 128} small images, 13 of them are used to generate the training
patches, and rest of them are used to generate the testing patches. The patch size in the
learning and testing is manually selected as {20 × 20}. 240000 image patches are used in
extracting the features. 24000 samples are used for training a classifier and 2400 samples
are used for testing. The classification results are shown in Table 5.2a. Among all the
experiments, the proposed method performs the best.

1weight decay = 0.0002, momentum = 0.2
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Settings Training Testing

X 25.0% 16.2%
T 54.2% 50.4%

XT 61.8% 52.8%
FX 87.6% 63.0%
FT 91.7% 65.3%

FXT 94.8% 67.0%

(a) Brodatz 24 data set

Settings Training Testing

X 29.2% 19.0%
T 46.7% 43.8%

XT 57.3% 49.2%
FX 68.2% 60.4%
FT 72.0% 62.2%

FXT 77.4% 66.2%

(b) KTH data set

Settings Training Testing

RI 17.20% 10.16%
TI 24.67% 17.88%

RI + TI 30.88% 20.52%
FRI 44.82% 32.8%
FTI 48.62% 35.8%

FRI + FTI 54.676% 38.76%

(c) UIUC Dataset

Table 5.2: The texture classification result on various benchmark data sets.

KTH texture dataset

This dataset [11] has 11 different textures, 4 different samples for each texture, and 108
different images are available for each sample. Each image is of size {200 × 200}, and the
patch size is still selected as {20× 20}. Only the 108 images from sample a2 in each texture
are used: 54 for generating training samples and 54 for generating testing samples. 118800
patches are used for extracting the features. 11000 patches are used for training a classifier
and 1100 sample are used for testing. The best result is obtained with the proposed method.
Please note a poorer overall performance is expected as the variations within the training
samples make the problem harder. The detailed results are shown in Table 5.2b.

UIUC Dataset

The UIUC texture dataset has 25 different texture and 40 different images in each class.
Each image has the resolution of {640× 480}. Each image is downsampled to {160× 120},
the patch size for training is still {20 × 20}. The data set is first used in [39]. In each
class, 20 random images are used for generating training samples, and other ones are used

2Available at http://www.nada.kth.se/cvap/databases/kth-tips/
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for generating test samples.A total number of 250000 samples are used as training. 25000
sample are used for training multi-class classifier and 2500 sample are used for testing.The
same comparison results are shown in table 5.2c, and yet our proposed method works the
best. Similarly, a poorer classification result can be expected as the complex variation in
training samples will decrease the performance of the model.

5.4 Texture Reconstruction
As the proposed model is capable of capturing the internal structures of the trained objects,
it’s possible to reproduce, reconstruct and synthesize the trained data using an appropriate
initialization.

However, following the previous chapter, our proposed model is successfully trained using
a close enough approximation. This did not change its capabilities of producing useful
reconstruction.

To this purpose, we made a demonstration of texture reconstruction for showing the
connections between the proposed model and its approximation. In this experiment, 6
random image patches are chosen from the Brodatz24 dataset testing samples, and a {10×10}
square center of the patches are removed for reconstruction. The reconstruction result can
be seen in Figure 5.13. In the figure, we conducted two sets of different reconstruction
experiments: one is on reconstructing seen training examples on the left; another is on
reconstructing unseen testing examples on the right. Here, seen and unseen means if data
is present for training the classifier. For both sides, the first row shows the random samples
with missing centers. The second row shows the reconstruction from GRBM model, and
the reconstruction from the proposed model GGBM is shown in the third row. The original
samples are shown at the last row.

For comparison, the reconstruction result from GRBM(X) model is provided on the
second row of the images. From this experiment, we can see that the learned model is capable
of learning a generative model for the texture successfully. Despite the regularization, the
reconstructions still seem to have too high contrast in our reconstruction on the third row.
One way to improve the result would be to use the GRBM(X,T) as an initialization for the
GGBM, and train it further.

The issues on how to realize the exact transformation from the approximated model to
the real model remains an open research topic.

5.5 Conclusion
In this thesis, we have tackled the problem of modeling texture information. We proposed
a modified version of GGBM and a simpler learning algorithm for that. From the exper-
imental results, we can argue that the proposed model is beneficial in terms of modeling
the structured information such as textures. Among all the results, the highest accuracies
are obtained by the features learned from the proposed model. Although these accuracies
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(a) Training Samples (b) Testing Samples

Figure 5.13: The texture reconstruction experiment

are not the state-of-the-art, the proposed model opened up a possibility where the texture
information can be successfully modeled using the higher order Boltzmann machine.

Clearly, a few improvements are expected in our approach. As the true power of the deep
network is the modeling the hierarchies of information, the texture information is expected
to be modeled by a deep network where the proposed method works as a building block.
Also, a more comprehensive test on the qualities of the generative model learned from the
proposed model is expected.
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Chapter 6

Conclusion

In this thesis, a series of studies combining deep networks and texture modeling are con-
ducted.

Texture modeling is an old yet important subject in the field of machine vision. The
texture information is generally considered as an internal property or characteristic of an ob-
ject, and it is often one of the most distinguishable feature from other objects. However, due
to the complex changes of environment illumination, affine transformation, scaling, rotation,
etc., the detection and identification of texture can be a rather hard problem.

Since the earliest paper in [33], texture modeling has arrived in the era of computational
modeling. Since then, various human-engineered feature extraction methods such as textons
and co-occurrence matrices have been studied and adopted. Even though these methods work
perfectly in most of the occasions, there is yet no understanding about how the texture is
formed. To that end, generative models are applied to the texture information to understand
the structural information about the textural information. In this thesis, an attempt has
been made to understand the local textural information by applying the latest achievements
in the advanced neural network research, namely deep learning.

Deep learning, based on deep networks, has been experimentally shown to have a huge
capability of understanding the generative model of objects. Since the introduction of deep
neural networks, they have been producing world-record level performances on various dif-
ferent machine learning tasks, such as hand-written digit classification, document hashing,
speech recognition, etc. However, there is little research on applying deep learning on tex-
tural information until now. From this thesis, we can claim that textural information is
greatly captured by the higher order Boltzmann machine, and the learned models are capa-
ble of generating good enough textures and excellent classification results on various publicly
available texture databases.

The future research can be extended into several directions. First of all, an exact learning
algorithm shall be proposed for the convolutional higher order Boltzmann machine. One of
the reasons why we need to propose an approximate learning scheme is that the learning
of the proposed model is too sensitive to the initial parameters, and can hardly produce
consistent learning results on the different datasets. Additionally, based on the fact that our
model is actually closely related to the approximated objective function, we can actually
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utilize the well defined learning algorithm for the Gaussian restricted Boltzmann machine.
However, in order to popularize the proposed method, a similar attempt on proposing an
efficient learning algorithm is needed for making a consistent learning results on the various
widely available datasets.

Secondly, a deep network based on the proposed method is expected to be introduced.
In this work, an early attempt is made to learn the low level feature sets from the texture.
It is expected that the deeper the deep network is, the more abstract texture features there
will be present. Therefore, a systematic attempt to build a comprehensive deep network
based on the proposed convolutional higher order Boltzmann machine will be made.

Thirdly, in order to produce consistent learning results on deep models, a new enhanced
learning algorithm shall be studied to some extent. One of the problems that we faced is
the difficulties of learning in the proposed model. One of the references can be the enhanced
gradient learning algorithm proposed by Cho, et al in [15].
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Appendix A

Update rule for Convolutional Gated

Boltzmann Machine

Gated Boltzmann Machine in Texture Modeling
X refers to the whole data, and one sample is denoted as x. The whole hidden activation is
denoted as H, and the hidden activation for one sample is h.

The energy function for Gated Restricted Boltzmann machine is

E(x,y,h)
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where d = i − j, which represents the nearby neighborhood of pixel i. Also, td =
∑

id xiyd

and Wijk = Wdk. Therefore,
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Update rules
Learning this proposed model can be extremely complicated due to the enormous number of
parameters. However, through a simplification, the model can be learned efficiently. Instead
of feeding normal X, [X,T] is fed to the normal RBM learning algorithms.
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If we denote [X,T] as Q, one can find the joint distribution of samples and hidden
neurons:

p(q,h) =
1
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)
This equation can be transformed to
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From this, we can argue that one can learn a semi-Boltzmann machine by RBM algo-

rithm. The sampling rule for each sample is:
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1 + exp

(
−
∑

i xi
wxhik
2 −

∑
j yj

wyhjk
2 −

∑
d tdwdk − bhk

)
p(xi = 1|x,h) = 1

1 + exp
(
−
∑

ik hk
Wxh
ik

2 −
∑

jk yjhkwijk − bxi −
∑

ij yjb
t
i

)
p(yj = 1|y,h) = 1

1 + exp

(
−
∑

jk hk
W yh
jk

2 −
∑

ik xjhkwijk − b
y
j −

∑
ij xjb

t
i

)

72



Gaussian GBM and its update rule
Similarly, one can train a Gaussian GBM using GRBM. The energy function for GB-semi-
GBM is defined as
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Therefore, the joint probability of data and hidden neurons are:
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Then, the update rules are defined as
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