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Abstract—The nonlinear independent component analysis improve the accuracy of the approximation significantly and
method introduced by Lappalainen and Honkela in 2000 uses help avoid the stability problems.
a truncated Taylor series representation to approximate the  The rest of the paper is organised as follows. The nonlinear

nonlinear transformation from sources to observations. The . . . .
approach uses information only at the single point of input mean ICA method is briefly introduced in Sec. Il. Methods for

and can produce poor results if the input variance is large. This @pproximating nonlinear transformations of probabilitgtd-
feature has recently been identified to be the cause of instability of butions are introduced first in a general setting in Secahy

the algorithm with large source dimensionalities. In this paper, with specific application to MLP network in Sec. IV. The new
an improved approximation is presented. The derivatives used approximation method is also presented in Sec. IV. In Sec. V,

in the Taylor scheme are replaced with slopes evaluated by . tal . £ h thods i ted. Th
global Gauss-Hermite quadrature. The resulting approximation an experimental comparison or the methods IS presented. The

is more accurate under high input variance and the new learning Paper ends with conclusions in Sec. VI.

algorithm more stable with high source dimensionalities.
9 9 II. NONLINEAR ICA BY VARIATIONAL BAYESIAN

LEARNING

Let us denote the observed data Ky = {x(t)|¢t}. Given

Variational Bayesian learning has recently become velje data, the goal is to estimate the sourSes {s(t)|t} and

popular in the field of independent component analysis (ICA)ther model parametets= {¢;|i}. The MLP network model
Several authors have proposed methods based on applyirf§rdhe observations can be written as

variational method called ensemble learning to a linear gep ;) _ ¢(5(4): A. B.a b)-n(t) = Bo(As(t)La)Lbin(t
erative model with mixture-of-Gaussians source prior [4]— (1) = £(s(t); A, B,a, b)+n(t) $As(t)+a) ((is

The same method can also be applied to nonlinear ICA or bligghare n(t) is Gaussian noise ang is the nonlinear acti-
source separation (BSS) by replacing the linear generaty&ion function of the hidden neurons. The weights —

model with a nqnlinear one. In [5], the nonlinear mappin?A’P)?a’b} are elements of along with the parameters
was modelled with a multilayer perceptron (MLP) ”etworlﬂgoverning n(t) and hyperpriors of other parameters. The
The method has later also been extended to handle SOUICES ces are assumed to be independent and have either a

with temporal dependencies to create a powerful nonlineggssjan mixture prior for nonlinear ICA or a Gaussian prior

state-space model [6], [7]. for simpler nonlinear factor analysis (NFA). In the lattexse,
The variational Bayesian learning algorithm requires €vahe method can be extended to perform ICA by using a linear

uation of certain statistics of the outputs of the modelegiv |ca algorithm as postprocessing for the extracted sourggs [

a distribution of parameter values. In case of a linear modglecause of this, the rest of the paper deals with the simpler
the statistics can be evaluated exactly, but with a nonlinggea method.

model they have to be approximated. In [5], the nonlinearity o5 5 variational Bayesian method, ensemble learning is
was handled by replacing it with a truncated Taylor seriggsed on approximating the posterior probability distitm
approximation. The method is simple and works well when th& the sources and model paramete(S, | X ) with a simpler
variance of the inputs is small enough. In cases of high inpykctaple distributionq(S, 6). The approximation is fitted

variance, however, the approximation loses accuracy. fdss py minimising the Kullback-Leibler divergence between the
recently been identified to be the cause of instability of ”'Ei’pproximation and the true posterior

algorithm with high source dimensionalites.

In this paper, a better approximation for the statistics of a D(q(S,0)||p(S,0|X)) = <log q(S’O)> ; 2
nonlinear transform of a probability distribution is preted. p(S,0|X)
The approximation is based on the idea of linearising thvehere(-) denotes expectation over the distributigi$, 6) [8],
nonlinearity, but instead of the derivatives used in the-Taj@]. The approximation is set to be of fixed simple form, such
lor scheme, different slopes evaluated with a global Gausss a multivariate Gaussian with a diagonal covariance used i
Hermite quadrature method are used. The change is found\iBA.

I. INTRODUCTION



The learning algorithm used in the nonlinear factor analydiixed precision, however, dimensions with sufficiently smal
method is in principle very simple. The cost function in E). ( input variance can be safely ignored, thus limiting the dhow
can mostly be evaluated exactly, up to an additive constaaf.the complexity somewhat.

The only difficulties arise from the likelihood term A. First-order Taylor approximation

Co = (—logp(X|S,0)) One of the simplest methods to evaluate the Gaussian
= 3" (~log N(x(1); £(s(t), W), %)) (3) integrals of Egs. (6) and (7) is to substituggy) with a
7 first-order Taylor approximatiog(y) + Dg(y)(y —¥) about
that has to be approximated somehow. Héféx; X,X,) the mean. This approach is used for example in the extended
denotes a Gaussian density for variablehaving meanx Kalman filter. The resulting approximate mean is
and covarianc&:,,. Assgming such an approximation can be E(¥)taylor = g(Y) (8)
found, the whole learning can be performed by numerically .
minimising the cost using e.g. simple gradient descent. ~ and covariance
Assuming a Gaussian noise model with diagonal noise co- E(¥)taylor = (Dg(y))gy(pg(y))T7 (9)

variance, the problem of approximatidg reduces to finding . , i
good approximations for the mean where Dg(y) is the Jacobian matrix of evaluated at the

B pointy.
f(s, W) = (f(s, W)) (4)  In case of the mean, the approximation can relatively
easily be extended to second-order by using only secoret-ord

and diagonal elements of the covariance _ i :
information of the inputs as

fsw) = ((fils W) =Fils.W)*)

1 _
9:(Y)taylorz = 9i(¥) + 3 trace(D%g;(¥)5y).  (10)
of the outputs of the MLP network.

In case of variance, the second-order approximation reguir
[Il. GAUSSIAN INTEGRATION higher order statistics of the inputs. The second-ordercpp

The mean of a nonlinear functiqg of y ~ N(y,X,) can imation is more accurate in case of low input variance, but it
be written as integral of a given function with a Gaussia@dds some new problems. In case of boungetbr instance,

weight the mean estimates given by Eq. (10) are unbounded whereas
those given by the first-order approximation in Eq. (8) are
I(g) =g(y) :/ g(y)N(y; ¥.3,)dy. (6) bounded. It is therefore not obvious that the second-order
" approximation should always be preferred over the firseord
With this formalism, the covariance can be written as variant.

Ieov(g) = / (8(y) —8()(&(y) — &) N(y; ¥,%,)dy B. Gauss-Hermite quadrature
_ o Gauss-Hermite quadrature is a method for evaluating nu-
=1((g() —&W)(&()-8x)") merically one-dimensional Gaussian integrals. The metand
be iterated and thus applied in higher dimensions as well, bu
The problem of multivariate Gaussian integration has maitfye number of function evaluations grows exponentiallytso i
applications and has thus been studied widely. It is needed§ not very practical in high dimensions.
many problems in physics and mathematical finance, but theThe Gauss-Hermite quadrature approximation for one di-
methods used in these applications seem to concentrate nfBgnsional version of Eq. (6) with ~ N(7,y) is of the form
on the accuracy of the approximation and use computatipnall N
intensive Monte Carlo and quasi-Monte Carlo methods [10]. Icauss-Hermitkg) = Zwig (@ + ﬁti) , (11)
Unfortunately, these methods are computationally too yreav i=1

for machine learning applications such as nonlinear Kaimgfhere theabscissast; and weightsw; are determined by
filtering and nonlinear ICA, where the integrals are needed g quiring the approximation to be exact for polynomialsaip t

part of an iterative algorithm. Therefore e.g. nonlinealmia@n  gyjitable degree. The number of points used can be determined
filtering methods use either a simple Taylor approximatiogy the level of accuracy needed.

(extended Kalman filtering) or a simple quadrature with very ysing these, the Gauss-Hermite approximation for mean and

few points (unscented Kalman filtering). _ variance of a scalar function can be written as

Finding good approximations for high-dimensional Gaus- N
sian integrals is in general very difficult. In [11] it is show G(y)on = Zwig@Jr Vi) (12)
that when the required precisierapproaches zero, the worst- =

case complexity for evaluating that good approximationhef t

integral is of the order—?, whered is the dimensionality 9

of the input. In the examples of Sec. V, for instance, these TWen =Y w; (g(er Vi) fy(y)) . (13)
dimensionalities are typically of the order of 1000. In ca$e i=1



C. The unscented transform presented later in Sec. V-A. Unfortunately, the unscented

The unscented transformation proposed by Julier aH@nsform seems to produce surprisingly poor results in low
Uhlmann in 1996 [12] was designed to overcome the defio!Se conditions and is thu.s as such unsuitable replacearent
ciencies of the Taylor approximation used in extended Kaim#he old Taylor approximation. The poor results are probably
filter. The resulting unscented Kalman filter has since be€§€ to the form of the function represented by the MLP
developed further e.g. in [13]. including correlations caused by products of differentuinp

In one dimension, the unscented transform is mostly eqUI\(,ariables. These can bg easily handled with minor extension
alent to Gauss-Hermite quadrature. In higher dimensiori@,the Taylor approximation but are neglected by the unscent
however, the number of points used in the approximatidfansform.
grows much more slowly with the dimensionality. In aa ~ Overall, the linear parts of the MLP are easy to handle
dimensional case, the unscented transform is based ort-sel@¥actly. The only difficulties are caused by the nonlinéesit
ing a sety of 2n weighted points together with the mean poinit-e- the activation functions of the hidden neurons. If thos
that describe well the input distribution. In case of diagonWere replaced with linear functions, the whole network wioul
input covariance, the points will reside on the coordinatesa be linear and even the simplest Taylor approximation would
at a distance governed by corresponding standard deviatiBf €xact. Because of this, it would seem reasonable to try
These points are then transformed individually to get a ndfy improve the Taylor approximation by using a more so-
set of pointsZ; = g();). The output mean and covariancéhisticated approximation for those scalar functions euith
are then computed as weighted mean and covariance of ghanging the whole scheme. The new method is thus basically
transformed pointsz. the old Taylor approximation but with a linearisation of the

The unscented transform is intuitively appealing. With &ctivation functions based on the Gauss-Hermite quadratur
suitable selection of points and their weights, it can aghieinstéad of actual Taylor series expansion about the mean of
second-order accuracy with respect to Taylor approximatiéhe input.
of the nonlinear transform. Additionally some informatiofi
higher order statistics of the input can be incorporateche t
selection of the points. The non-local nature of the unszent Let us examine the position of the activation functipfy)
transform also promises better accuracy for cases with high the hidden neurons of the MLP network in the Taylor
input variance in which the Taylor based approximationk fapPproximation. According to the first-order Taylor approxi

Despite its benefits, the unscented transform is not withotigtion, the mean of the output is
drawbacks. As noted in the beginning of this section, main- = V> <
taining the same level of accuracy of the approximation unde f(s, W) =Bo(As+a) +b (14)
increasing input dimensionality requires exponentiatéase and the variance
in the number of function evaluations. The number of furrctio ~ R _—7
evaluations used in unscented transform grows only ligearl fils, W) = VSfi(S’“/_)25VSfi(S’ W)_
so the accuracy of the approximation is bound to decrease + Vw fi(5, W)Zw Vw fi(s, W),

as the dimensionality increases. Quantifying the decreEisewhere the weights and sources are assumed to have distribu-

however, difficult, because the complexity result presdant%ons W ~ N(W,%w) ands ~ N(8,3,). The required
) ) S/

A. First-order Taylor approximation

(15)

above is only valid on the Im_ut of vanishing error. .derivative with respect to the inputs, for instance, is
The unscented transform is a good method for evaluating
simple Gaussian integrals in low dimensions. In higher dime V.fi(5, W) = B, diag(¢'(As +7))A, (16)
sions, choosing only two points for each dimension loses too _ L
much information and the results suffer. where B; denotes theith row of the mean matrix and
diag(z) denotes a diagonal matrix with elements of vector
IV. APPLICATION TO THEMLP z on its main diagonal. From this it is clear that both

The original nonlinear factor analysis method [5] uses thapproximations can be broken into parts, i.e. evaluatirgg th
first-order Taylor scheme of Eq. (9) for approximation ofmean and variance ¢f = As + a first, then those of(y)
the variance and the second-order scheme of Eq. (10) #ud finally those oB¢(y). The only approximations are done
the mean. Looking at the results of earlier real experimeritsthe middle step, the first and the last are exact.
reported e.g. in [5]-[7] and the experimental analysis of a
proximation accuracy presented later in Sec. V-A, the ntkth
works very well when the input variance is low enough. Only As noted before, the above method fails in case of high input
when the number of estimated sources, and along withviriance because it relies on information of the activatiore-
the input variance, grows too large, the method will run intion at a single point. To this end, an alternative approxioma
trouble. for the second step, evaluation of mean and variancg(g?,

The non-local nature of the unscented transform suggestsproposed. Because of the naturegnfthe problem splits
that it should be better able to handle the cases of highturally to one-dimensional subproblems concerning each
input variance. This is confirmed by the results of experithercomponent separately. These can then be handled easily by

%. Gauss-Hermite approximation of hidden neurons



applying the Gauss-Hermite quadrature introduced in Skec. IA. Approximation accuracy

B. In order to keep the computational load reasonable, an, this experiment, the accuracy of different approxinagio

approximation With three points was used. This also mak%s studied. The accuracy was evaluated by testing the ap-
the procedure equivalent to applying the unscented tramsfoy, imations with 500 random input distributions, eachhwit

0 ¢(y). _ ) ~ , . 100 random MLP networks. The means of the weights of the
Once the meam(y;)en and variancej(y;)en as given in- \y p hetworks were sampled randomly from a unit variance
Egs. (12) and (13) are known, it is easy to return back to &, \sqjan distribution. The covariance of the weights was
computations implied by the Taylor scheme by setting assumed to be diagonal with variances of the weights alllequa
&(yi) == d(vi)eH (17) to 1073. 100 input means were also randomly sampled from

a unit variance Gaussian distribution. Five different eslu

and = were tested for the variances at each of the input means,
& (y;) = ¢(y~i)GH7 (18) 1073,1072,107,1 and 10. The results were then compared
Yi to assumed correct solutions evaluated with a Monte Carlo

where7; is the variance ofy;. These formulae can be seernethod. The dimensions of the MLP network were 5-30-10,
to define a global linearisation of the activation function ii-e. 5 input neurons, 30 hidden neurons and 10 output neurons

a sense that is optimal with respect to the assumed Gaussiahhe results of the experiment are shown in Figs. 1, 2
input. and 3. Fig. 1 shows the mean squared error of different

. . . mean approximations. It confirms the suspicion that second-
C. Computational considerations order Taylor approximation is better than first-order with
Above, the new approximation has been derived for netwoydy variance but worse with high variance. The unscented
inputs only. Corresponding approximations are needed f@ansform is surprisingly worse than even first-order Taylo
network weights as well, but they can be derived in a similpproximation. The proposed method provides the besttsesul
manner. The dependence of the outputs from the second laygrall levels of input variance.
weightsB andb is linear so it can be handled trivially. The The mean squared errors of different variance approxima-
derivatives of the output with respect to first layer weights tions on logarithmic scale are shown in Fig. 2. The most

anda are notable result is the rapid drop in accuracy of the Taylor
Va, fi(58,W) = Bi;¢'(As); + a,)s, (19) @approximation. The unscented transform and the proposed
o ) method provide more stable results with the proposed method
where A is the jth row of matrix A, and being clearly better on all noise levels. Fig. 3 shows the
Vafi(s,W) = B; diag(¢'(As + 7). (20) maximum amount different methods underestimate the output

h . q bined with th variance. The plot shows the ratio of the true variance and
The Equations (16), (19) and (20) combined with the COfgimated variance, so value 1 would be the optimal result.

respondmg covariance mat'rlces of the pa.rameters eqcly 'MPhis result is shown separately because it is probably the mo
a different variance for the inpyt of the activation functions. harmful type of error for our application. The results artaea

Ad(_j|t|onally, none of these is equal to th_e total vananc_grof similar to the mean squared errors of the variance estimate.
which would seem the most natural choice for evaluating the

approximation for the mean. Evaluating these four separa*~

Gauss-Hermite approximations is computationally expensi 10 © Unscented transform

so combining them to evaluate several quantities with al&ing _ -~ 1st order Taylor

expansion is preferable. 100l 2nd order Taylor A
Most of the variance ofy is due to the variance of the —— Proposed method -

sources, S0 using a common approximation for the sour

variance and mean introduces only very small errors. Unfo

tunately, using the same approximation also for the weigh

introduces significant errors, so another one must be us

jointly for both A anda.

V. EXPERIMENTAL RESULTS

In this section, experimental results on the accuracy ar
performance of the different approximations are preserted
the first experiment, the accuracy of the approximations
studied with random MLP networks and random inputs. It 10 = 2 ) 0 1

: : 10 10 10 10
other experiments, the proposed method is compared to t Variance of the input
original Taylor approximation in nonlinear factor anasi

Mean square error of output mea

) ) ) ) Fig. 1. Mean squared error of different mean approximationa asction
1The Matlab code used in the NFA experiments is availablétatp:  of the input variance.
/1w ci s. hut. fi/projects/bayes/software/.
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of the input variance.

B. Nonlinear factor analysis with artificial data

1

The ratio of true variance and estimated variance efdteatest
underestimation of output variance for different approxiorat as a function

have increased the computational burden and added another
possible source of error.

The results of the experiment are shown in Fig. 4. With
10 sources, the algorithm using the Taylor approximation
produces better results than the proposed approximatios. T
results attained by the Taylor algorithm do, however, yield
significantly lower cost function value than the results tod t
proposed algorithm also with the new approximation, so the
problem is due to suboptimal optimisation algorithm. When
the number of sources is increased to 15, the Taylor algorith
can no longer produce any reasonable results. Even the best
of the 12 simulations starts to diverge right at the stare Th
results of the proposed algorithm are affected by the iserea
in the number of sources only slightly.

25

=== Taylor, 10 sources
— Proposed, 10 sources
- -~ Taylor, 15 sources e

H -

—— Proposed, 15 sources -

N
o

[y
a1

=
(=]

SNR of source reconstruction (dB)

5r A i
1
0 ‘ \'l\"’\l ‘
10° 10° 10*
# of iterations
Fig. 4. Comparison of signal to noise ratios attained withfedént

approximations in the NFA algorithm using either 10 or 15 sear The
results show the best of 12 simulations with different randoitialisations
at each point.

C. Nonlinear factor analysis with natural data

The new method was tested on natural data with the speech
data compression experiment also presented in [7]. The data
set used in the experiment consisted of spectrograms of 24
individual words of Finnish speech, spoken by 20 different
speakers. The spectra were modified to mimic the reception

The nonlinear factor analysis method using the new apbilities of the human ear. This is a standard preprocessing
proximation was tested using the same artificial data set thmocedure for speech recognition. The preprocessed data co
was used in [5]. The data set consisted of 20-dimensiorsated of 2547 30-dimensional spectrogram vectors.
vectors that were formed by mapping 4 sub-Gaussian and.inear factor analysis as well as nonlinear factor analysis
4 super-Gaussian sources nonlinearly with a random MW#th both old Taylor based approximation and proposed new
network. The number of samples was 1000. The results weygproximation were applied to the data to extract different
evaluated by the signal-to-noise ratio of the sources meav number of sources or factors. The nonlinear factor analy-
by optimal linear reconstruction from the estimated sasirceis methods were run for 10000 iterations. Fig. 5 shows
to the true sources. The additional linear reconstructias wthe residual energy left unexplained by the given number
used because the NFA method cannot find the correct rotatmnsources. Nonlinear factor analysis is able to explain the
for the sources. The rotation could be recovered blindingisidata equally well with fewer factors than the linear method.
a linear ICA algorithm, but this was not used as it wouldhe differences between different approximations in medr



factor analysis are mostly small. The proposed approxonatiunfortunately the results suffered slightly. The bettetirop
is able to reliably estimate even 20 components while thieund by the old algorithm are also clearly better with respe
Taylor approximation method consistently fails when tgyto  to the cost function evaluated with the new method, so the
estimate more than 13. It is possible that using many diftereproblem is most likely due to the highly tuned optimisation
random initialisations might help the Taylor method esterea algorithm used in the NFA method. The optimisation alganith
few more components as shown in the results reported in [Was designed for the simpler approximation and may thus not
but the difference in the stability of the methods is veryacle work in the desired manner with the more complicated new
Additionally, in the cases where the Taylor approximatiomethod. In future, the complicated hand-tuned optimigatio
produces better results than the proposed method, the agorithm should be replaced with something more suitable
function value of those simulations is also lower when evaldor the new approximation.
ated using the proposed approximation than the one attainedhe computation time required by the nonlinear factor
in the actual simulation using the proposed method. Theavomnalysis algorithm using the new approximation is larganth
results are therefore due to the optimisation method ustd wivith the old Taylor approximation. The increase is, however

the new approximation and should be remediable by improvitgpically less than 50 %.

the optimisation algorithm.

10°

. -+ linear FA
) —e— nonlinear FA (proposed)
—— nonlinear FA (Taylor)

Remaining energy

\\*\*—* =3

20

10 15
Number of sources

25

Fig. 5. The remaining (residual) energy of the speech datafasction of
the number of extracted components using linear factor aisaysl nonlinear
factor analysis with proposed approximation and Taylor epipnation. There
are no results for Taylor approximation with more than 13 coneptsmbecause
all the simulations diverged.

VI. CONCLUSIONS

ACKNOWLEDGEMENTS

The author wishes to thank Juha Karhunen, Erkki Oja and
Tapani Raiko for useful comments and discussions. This work
was supported by the Finnish Centre of Excellence Programme
(2000-2005) under the project New Information Processing
Principles.

(1]
(2]

(3]

(4]

(5]

(6]

(7]

In this paper, a new method for estimating the mean and tHel

variance of a nonlinear transform of a probability disttibo

was proposed. The method is especially designed for use
with nonlinear transforms modelled by MLP networks. It is[?

based on standard first-order Taylor method of linearisig t

mapping about the input mean, except that the derivatives

of the nonlinear activation function are replaced by slopéjso

evaluated globally by Gauss-Hermite quadrature. The glohay

nature of the approximation increases its accuracy withelar

input variances significantly while guaranteeing secord&o
accuracy for cases of small input variance.

The new approximation was used to derive a new learnin

algorithm for the nonlinear factor analysis (NFA) modelgori

REFERENCES

H. Attias, “Independent factor analysid\eural Computationvol. 11,

no. 4, pp. 803-851, 1999.

H. Lappalainen, “Ensemble learning for independent comepo anal-
ysis,” in Proc. Int. Workshop on Independent Component Analysis and
Signal Separation (ICA'99)Aussois, France, 1999, pp. 7-12.

J. Miskin and D. J. C. MacKay, “Ensemble learning for bliedurce
separation,” inlndependent Component Analysis: Principles and Prac-
tice, S. Roberts and R. Everson, Eds. Cambridge University Press,
2001, pp. 209-233.

W. Penny, R. Everson, and S. Roberts, “ICA: model ordeecin
and dynamic source models,” imdependent Component Analysis:
Principles and PracticeS. Roberts and R. Everson, Eds. Cambridge
University Press, 2001, pp. 299-314.

H. Lappalainen and A. Honkela, “Bayesian nonlinear jmeledent com-
ponent analysis by multi-layer perceptrons,’Advances in Independent
Component Analysisvl. Girolami, Ed. Berlin: Springer-Verlag, 2000,
pp. 93-121.

H. Valpola and J. Karhunen, “An unsupervised ensemblenlag
method for nonlinear dynamic state-space modé&lsfiral Computation
vol. 14, no. 11, pp. 2647-2692, 2002.

H. Valpola, E. Oja, A. llin, A. Honkela, and J. Karhunem\dnlinear
blind source separation by variational Bayesian learhii§yCE Trans-
actions on Fundamentals of Electronics, Communicatioms@mputer
Sciencesvol. E86-A, no. 3, pp. 532-541, 2003.

G. E. Hinton and D. van Camp, “Keeping neural networks senipy
minimizing the description length of the weights,” Rroc. of the 6th
Ann. ACM Conf. on Computational Learning TheoBanta Cruz, CA,
USA, 1993, pp. 5-13.

D. J. C. MacKay, “Developments in probabilistic modellingth neural
networks — ensemble learning,” Neural Networks: Artificial Intelli-
gence and Industrial Applications. Proc. of the 3rd Annugimposium

on Neural Networks1995, pp. 191-198.

] J. F. Traub and A. G. WeschultZomplexity and Informatian Cam-

bribge University Press, 1998.
F. Curbera, “Delayed curse of dimension for Gaussiaegration,”
Journal of Complexityvol. 16, no. 2, pp. 474-506, 2000.

] S. Julier and J. K. Uhlmann, “A general method for approXinganon-

[1%]

nally proposed in [5]. The new algorithm was able to avoid the

stability problems from which the old algorithm sufferedit b

linear transformations of probability distributions,” Ruifrs Research
Group, Department of Engineering Science, University ofddxf Tech.

Rep., 1996.

E. A. Wan and R. van der Merwe, “The unscented Kalman filier

Kalman Filtering and Neural NetworksS. Haykin, Ed. New York:
Wiley, 2001, pp. 221-280.



