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8.1 Introduction

Automatic speech recognition (ASR) means an automated process that inputs human
speech and tries to find out what was said. ASR is useful, for example, in speech-to-text
applications (dictation, meeting transcription, etc.), speech-controlled interfaces, search
engines for large speech or video archives, and speech-to-speech translation.

Figure 8.1 illustrates the major modules of an ASR system and their relation to applica-
tions. In feature extraction, signal processing techniques are applied to the speech signal in
order to dig out the features that distinguish different phonemes from each other. Given
the features extracted from the speech, acoustic modeling provides probabilities for differ-
ent phonemes at different time instants. Language modeling, on the other hand, defines
what kind of phoneme and word sequences are possible in the target language or applica-
tion at hand, and what are their probabilities. The acoustic models and language models
are used in decoding for searching the recognition hypothesis that fits best to the models.
Recognition output can then be used in various applications.
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Figure 8.1: The main components of an automatic speech recognition system and their
relation to speech retrieval and machine translation applications.

Our focus in ASR is large vocabulary continuous speech recognition (LVCSR). For several
years, we have been developing new machine learning algorithms for each of the subfields
and building a complete state-of-the-art recognizer to evaluate new methods and their
impact. Originally, the recognizer was constructed for fluent and planned speech such as
Finnish newsreading, where language models covering a very large vocabulary are required.
Besides newsreading, other example tasks are political and academic speeches and other
radio and television broadcasts where the language used is near the written style. Sofar,
we have not seriously attempted to recognize Finnish spontaneous conversations, because
enough Finnish training texts for learning the corresponding style do not exist. Our main
training corpus for language modeling is the Finnish Language Bank at CSC. For acoustic
modeling we use voice books, Finnish Broadcast Corpus at CSC and the SPEECON
corpus.
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In addition to the recognition of Finnish, we have performed experiments in English, Turk-
ish and Estonian. To make this possible we have established research relations to different
top speech groups in Europe and U.S., e.g. University of Colorado, International Computer
Science Institute ICSI, Stanford Research Institute SRI, IDIAP, University of Edinburgh,
University of Sheffield, University of Cambridge, Bogazici University, Tallinn University
of Technology, and Nagoya Institute of Technology. The forms of collaboration have in-
cluded researcher exchanges, special courses, workshops and joint research projects. We
have also participated in several top international and national research projects funded
by EU, Academy of Finland, Tekes, and our industrial partners. In the close collaboration
with our Natural Language Processing group 10 we are also organizing an international
competition called Morpho Challenge to evaluate the best unsupervised segmentation algo-
rithms for words into morphemes for information retrieval, statistical machine translation,
LVCSR and language modeling in different languages. This challenge project is funded by
EU’s PASCAL network and described in Chapter 10.

In the EU FP7 project called EMIME 2008-2011, the aim was to develop new technologies
for spoken multilingual integration, such as speech-to-speech translation systems. This
has broadened the field of the group to include some aspects of text-to-speech synthesis
(TTS), such as supervised and unsupervised adaptation in the same way as in ASR. Suc-
cessors of this project include a new EU FP7 project Simple4All which aims at developing
unsupervised machine learning tools for rapid data-driven development for new TTS sys-
tems by adaptation and a new project Perso which aims at developing new Finnish TTS
systems by adaptation.

Other new openings in the group are developing adaptation methods for special purpose
dictation (e.g. in medical domain in Mobster project), using ASR in various multimodal
human-computer interaction (e.g. in augmented reality in UI-ART project), and audiovi-
sual indexing (e.g. television broadcasts in NextMedia project).
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8.2 Training and adaptation of acoustic models

Acoustic modeling in automatic speech recognition means building statistical models for
some meaningful speech units based on the feature vectors computed from speech. In
most systems the speech signal is first chunked into overlapping 20-30 ms time windows at
every 10 ms and the spectral representation is computed from each frame. A commonly
used feature vector consists of Mel-frequency cepstral coefficients (MFCC) which are the
result of the discrete cosine transform (DCT) applied to the logarithmic Mel-scaled filter
bank energies. Local temporal dynamics can be captured by concatenating the first and
second order delta features (time differences) to the basic feature vector.

The acoustic feature sequence in ASR is typically modeled using hidden Markov models
(HMM). In a simple system each phoneme is modeled by a separate HMM, where the
emission distributions of the HMM states are Gaussian mixtures (GMMs). In practice,
however, we need to take the phoneme context into account. In that case each phoneme
is modeled by multiple HMMs, representing different neighboring phonemes. This leads
easily to very complex acoustic models where the number of parameters is in order of
millions.

Estimating the parameters of complex HMM-GMM acoustic models is a very challeng-
ing task. Traditionally maximum likelihood (ML) estimation has been used, which offers
simple and efficient re-estimation formulae for the parameters. However, ML estimation
does not provide optimal parameter values for classification tasks such as ASR. Instead,
discriminative training techniques are nowadays the state-of-the-art methods for estimat-
ing the parameters of acoustic models. They offer more detailed optimization criteria to
match the estimation process with the actual recognition task. The drawback is increased
computational complexity. Our implementation of the discriminative acoustic model train-
ing allows using several different training criteria such as maximum mutual information
(MMI) and minimum phone error (MPE) [1]. Also alternative optimization methods such
as gradient based optimization and constrained line search [2] can be used in addition to
the commonly used extended Baum-Welch method. Our recent research has concentrated
on comparing the different optimization strategies and finding the most effective ways to
train well-performing robust acoustic models [3].

As acoustic models have a vast amount of parameters, a substantial amount of data is
needed to train these models robustly. In the case a model needs to be targeted to a
specific speaker, speaker group or other condition, not always sufficient data is available.
The generic solution for this is to use adaptation methods like Constrained Maximum
Likelihood Linear Regression [4] to transform a generic model in to a specific model using
a limited amount of data. In [5] and [6] this method was repeatedly applied to a model,
so that first a transformation to a foreign accented model was made and successively a
transformation to a speaker-specific model. These stacked transformations improved up
to 30% recognition accuracy, depending on the accent and amount of available data for the
speaker. In Figure 8.2 the improvement in word error rate is shown for different amounts
of speaker adaptation data and for both a native and a mixed acoustic model.

Vocal Tract Length Normalization (VTLN) has become an integral part of the stan-
dard adaptation toolkit for ASR. This method approximates physical properties of each
speaker’s vocal tract and shifts accordingly the frequency components of the speech to
be recognized. The simple old school way of applying VTLN was to warp the cut-off
frequencies in the filter bank analysis, before transforming the frequency channels of the
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Figure 8.2: This figure shows the improvement that Stacked transformations (st) give over
normal CMLLR adaptation. The WSJ is native English and the DSP dataset is Finnish-
accented English speech. Stacked transformation have the most effect when only a small
number of adaptation sentences is used.

speech sample to cepstral components. In the current approach, VTLN is represented as a
CMLLR-style linear transformation on the conventional MFCC features. Using VTLN as
a linear transformation on the MFCC features allowed us to study the curious interplay of
CMLLR and VTLN adaptation methods and the use of VTLN to to boost other speaker
adaptation methods [7].

Acoustic modeling of parametric speech synthesis

The rising paradigm of HMM-based statistical parametric speech synthesis relies on ASR-
style acoustic modelling. Speech synthesis, or Text-To-Speech (TTS) models are more
descriptive and less generalized than the ASR models. They try to accurately describe
the numerous, variously stressed phones, and therefore the model sets are much larger
than the ASR model sets. Training acoustic models for high-quality voice for a TTS
system requires data of close to 1000 high-quality sentences from the target speaker. The
adaptation of HMM-based TTS models is very similar to adaptation of ASR models.
Maximum a posteriori (MAP) linear transformations are applied in similar fashion to
ASR adaptation. A collaborative investigation using data from several languages showed
that adapting a general voice is a practical and effective way to mimic a target speaker’s
voice[8].

The speech synthesis work related to the EMIME EU/FP7 project concentrated on the
adaptation of HMM-based TTS models. The goal of the project was to personalize the
output voice of a cross-lingual speech-to-speech system, to make it resemble the voice of the
original speaker [9]. This is accomplished by adapting the acoustic features of the synthesis
model set in one language (Source language, L1) and mapping these transformations
to a second model set (Target language, L2). The goal of the Cross-Lingual Speaker
Adaptation (CLSA) is to effectively model speakers’ speech in another language. As a
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person’s speech in a foreign language depends, beside physical characteristics, also very
much on the environmental factors - mostly how much and in what kind of linguistic
environment has the speaker practised speaking the language, it is almost impossible to
predict how a person would in reality sound in the second language. We investigated what
kind of expectations listeners usually have about a speaker’s voice in a second language,
and particularly whether the listeners preferred a foreign- or native accented voice model
for basis of adaptation, a very important aspect in real-life situation where only little data
is available for adaptation [10].
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8.3 Noise robust speech recognition

Despite the steady progress in speech technology, robustness to background noise remains
a challenging research problem as the performance gap between automatic speech recog-
nition and human listeners is widest when speech is corrupted with noise. The work pre-
sented in this section is focussed on methods that model the uncertainty in the observed
or reconstructed (cleaned) speech features when the clean speech signal is corrupted with
noise from an unknown source. In addition to the uncertainty-based methods presented
here, we have continued the work on noise robust feature extraction using weighted linear
prediction [1].

Missing feature approaches

The so called missing-feature methods are a special case of methods that use observation
uncertainty or reliability in order to improve speech recognition performance in noisy con-
ditions. The methods, which draw inspiration from the human auditory system, are based
on the assumption that speech corrupted by noise can be divided to speech-dominated
i.e. reliable regions and noise-dominated i.e. unreliable regions as illustrated in Figure 8.3.
The clean speech information corresponding to the unreliable regions is assumed missing,
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Figure 8.3: Logarithmic mel spectrogram of (a) an utterance recorded in quiet environment
and (b) the same utterance corrupted with additive noise. The noise mask (c) constructed
for the noisy speech signal indicates the speech dominated regions in black and the noise
dominated regions in white.

which means that under additive noise assumption, the observed values determine an up-
per bound for the unobserved clean speech features but contain no further information
regarding the missing values. In noise-robust speech recognition, the missing clean speech
information is either marginalised over or reconstructed using missing-feature imputation
techniques [2]. The reconstruction approach was compared with other noise-robust speech
recognition methods in [3].

Reconstruction methods are based on modelling the statistical dependencies between clean
speech features and using the model and the reliable observations to calculate clean speech
estimates for the missing values. Recent improvements to missing-feature imputation are
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due to modelling the temporal dependencies between clean speech features in consecu-
tive frames. Processing the noisy speech in windows that span several time frames was
first proposed in the exemplar-based sparse imputation (SI) framework [4]. SI outper-
formed the conventional GMM-based imputation method that used frame-based process-
ing. Window-based processing was later introduced in the GMM-based framework in [5],
and to investigate other approaches to temporal modelling, a nonlinear state-space model
(NSSM) based framework was developed for missing-feature reconstruction in [6]. Both
the window-based GMM and the NSSM imputation method outperformed frame-based
GMM imputation in all experiments and outperformed SI when evaluated under loud
impulsive noise.

In addition to work on improving the core missing feature methods, we have studied miss-
ing feature methods in models of human hearing. Related to this work, we proposed a
model that explains the speech recognition performance of human listeners in a binau-
ral listening scenario [7]. Furthermore, we have applied the missing-feature reconstruction
methods developed for noise-robust speech recognition to extending the bandwidth of nar-
rowband telephone speech to the high frequency band [8] and the low frequency band [9].
The latter study won the International Speech Communication Association award for the
best student paper in Interspeech 2011.

Modelling uncertainty in reconstruction

In addition to using reliability estimates to determine reliable and unreliable features in
missing-feature reconstruction, we have studied using another type of reliability estimates
to improve the speech recognition performance when reconstructed or otherwise enhanced
speech data is used. First, we have studied uncertainty estimation in the context of sparse
imputation [10, 11]. Unlike the parametric methods that model clean speech using a GMM
or NSSM, for example, the exemplar-based sparse imputation method does not provide for
calculating a full posterior for the reconstructed features. We therefore investigated using a
number of heuristic measures to represent the uncertainty related to the SI reconstruction
performance. Similarly, we have developed a number of heuristic uncertainty measures for
the exemplar-based sparse separation technique that uses a speech and noise dictionary
to estimate clean speech features based on the noisy observations [12].
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[10] J. Gemmeke, U. Remes and K. J. Palomäki, Observation uncertainty measures for
sparse imputation, Interspeech 2010.

[11] H. Kallasjoki, S. Keronen, G. J. Brown, J. F. Gemmeke , U. Remes and K. J.
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8.4 Constraining and adapting language models

Early speech recognition systems used rigid grammars to describe the recognized language.
Typically the grammar included a limited set of sentences used to command the system.
Such language models do not scale for large vocabulary continuous speech recognition.
Therefore modern recognizers, including the Aalto University recognizer, use statistical
language models.

Constrained command languages are still useful in some spoken dialog applications, where
commands are important to be recognized correctly, especially if the system cannot be
adapted to a specific user group. We have succesfully built statistical language models
from command grammars, modeled in Backus-Naur Form (BNF). Language models built
in this way enable fast decoding and near perfect recognition accuracy.

When large-vocabulary speech recognition is applied in a specialized domain, the vocabu-
lary and speaking style may substantially differ from those in the corpra that are available
for Finnish language. Using additional text material from the specific domain, when
estimating the language model, is beneficial, or even necessary for proper recognition ac-
curacy. We have applied speech recognition to medical transcription. A huge collection of
dental reports was received from In Net Oy, for estimating a language model specific to
dental dictation. User tests are underway, but our benchmarks indicate large differences
in accuracy between different users.

Collecting domain-specific texts is time-consuming and usually there’s not enough data
available to estimate a reliable language model. Most of the times we have to use the little
in-domain data we have to adapt the general language model.

In a project aimed at developing a mobile dictation service for lawyers, we used law-
related texts to train an in-domain language model [1]. Adapting the general language
model with the in-domain model usually gave better results than just using either model
separately. One of the key challenges of the project was still to find proper adaptation
data. Even though the adaptation texts are of the targeted domain, the language of the
real-life dictations can still be significantly different than the written text.

Language model adaptation usually consists of mixing or combining the probabilities of
the general language model with the in-domain model. The most simple and popular LM
adaptation method is linear interpolation. Linear interpolation is performed by simply
calculating a weighted sum of the two models probabilities.

We have experimented with a more sophisticated LM adaptation method, which uses the
information theory principle of maximum entropy (ME) to adapt the general language
model with the in-domain model [2]. The key to this approach is that the global and
domain-specific parameters are learned jointly. Domain-specific parameters are largely
determined by global data, unless there is good domain- specific evidence that they should
be different. We tested the method on English and Estonian broadcast news and experi-
ments showed that the method consistently outperformed linear interpolation. The main
drawback with this method is that it’s very memory and time consuming.

The implementation of ME language model adaptation is freely available as an extension
to the SRI language modeling toolkit [3].
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8.5 Speech retrieval and indexing

Speech retrieval techniques enable users to find segments of interest from large collections
of audio or video material. Automatic speech recognition is used to transforms the spoken
segments in the audio to textual form. Information retrieval (IR) methods are used to
index the text, and to perform searches on the material based on query words typed by
the user. Since the amount of information in spoken form is very large and ever increasing,
the methods developed have to be fast and robust to be able to process large amounts of
variable quality material.

One complication in the speech retrieval process is the fact that the speech recognizer
output will always have erroneous words. A special problem for speech retrieval are out-
of-vocabulary (OOV) words – words that are not in the list of words the speech recognizer
knows. Any OOV word in speech can not be recognized, and is replaced by similarly
sounding but usually unrelated word. Since query words are chosen to be discriminative,
they are often rare words such as proper names. But rare words are often also OOV, since
the recognizer vocabulary is chosen so that a number of most common words are included.

This problem can be solved by using recognition units that are smaller than words, but
that are large enough to be able to model the language. Morphs produced by the Morfessor
algorithm have been proven to work well as such units. The speech recognizer language
model is trained on a text corpus where the words are split to morphs, and the recognizer
is then able to transcribe any word in speech by recognizing its component morphs. It
is possible to join the morphs to words and use traditional morphological analyzers to
find the base forms of the words for indexing. But since there will still be an amount of
errors in the morph transcripts, especially when the spoken word is previously “unseen”,
a word that did not appear in the language model training corpus, using morphs as index
terms will allow utilizing the partially correct words as well. In this case, query words
are also split to morphs with Morfessor. Experiments using Finnish radio material show
that morphs and base forms work about equally well as index terms, but combining the
two approaches gives better results that either alone [1]. Table 8.1 shows an example how
OOV words are recognized with word and morph language models.

Table 8.1: Example recognition results of two unseen query words at two different locations
each. With the morph language model, it is possible to recognize correctly at least some
of the morphs, which will match morphs in the query. With the word language model,
the words are replaced by unrelated words.

Query word Iliescun Namibian
- Translation Iliescu’s Namibia’s
Morph query ili escu n na mi bi an
Morph LM rec. n ilja escu ili a s kun ami bi an na min pi an
Word query iliescun namibia
Word LM rec. lieskoja eli eskon anjan namin pian
Word lemmas lieska eli elää esko anja nami pian pia
- Translation flame or live Esko Anja candy soon Pia

Audio and video is typically distributed as a flow of material without any structure or
indicators where the story changes. Thus, before indexing, the material needs to be
automatically segmented into topically coherent speech documents. This can be done e.g.
by measuring the lexical similarity of adjacent windows. Morphs were found to help in
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the segmentation task as well when processing ASR transcripts [1].

Retrieval performance can be further improved by utilizing alternative recognition can-
didates from the recognizer [1]. Retrieval performance is decreased if a relevant term is
misrecognized and is thus missing from the transcript. However, it is possible that the
correct term was considered by the recognizer but was not the top choice. Thus, retrieval
performance can be improved by extracting these alternative results from the recognizer
and adding them to the index. A confusion network [2] provides a convenient representa-
tion of the competing terms along with a probability value for each term.
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