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4.1 Introduction

We develop statistical machine learning methods for extracting useful regularities from
large, high-dimensional data sets. In practical computational data analysis tasks a com-
mon problem is lack of sufficient amount of representative data. If there was enough
data, modern statistical machine learning toolboxes would contain powerful approaches
to building flexible models that do not make strong assumptions about data, but given
little data we need to seek alternative ways to bring in more information. Our approach
is combining various sources of information.

In many applications, for instance in molecular biology and neuroinformatics, there is data
available in public or special-purpose databanks, but the problem is that not everything
is relevant. We are developing new machine learning methods capable of learning from
multiple data sources containing only partially relevant data, and generalizing to new
contexts. The methods extend and generalize the current approaches called multi-view,
multi-way and multi-task learning, on structured and unstructured domains.

Moreover, we have developed new principles and methods for the task of visualizing high-
dimensional data; this task is central in any knowledge discovery process.
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4.2 Multi-view and multi-way learning

Multi-view learning tells how several data sources, or views, can be combined to extract
more relevant information. We build Bayesian latent variable models for the task of
extracting statistical dependencies between multiple views of the same objects, for example
to capture relationships between images and their captions, or between expressions of genes
and chemical descriptors of drugs.

In the completely unsupervised case, we are given only the data matrices of co-occurring
data, and the task is to mine for dependencies between them. For combining two views we
have earlier introduced the Bayesian Canonical Correlation Analysis (CCA) model,
which finds linear components capturing correlations between the views while modeling
the variation specific to each view by separate noise components. To extend the range of
potential applications, we have extended the Bayesian CCA model to mixtures of robust
CCAs [1] and to generic exponential family noise models [2]. Recently, we introduced a
considerably more efficient version of Bayesian CCA [3], which is applicable also to very
large dimensionalities. Our novel solution builds on an efficient variational approximation,
enabled by reformulating the problem as a group-wise sparse latent component model.
Besides working with linear models, we have also presented a nonparametric Bayesian
clustering model for similar setups [4].

The problem of analysing dependencies between more than two views is considerably
mode difficult. Most solutions seek relationships between all views, whereas most practical
applications will not satisfy that assumption. Recently we introduced the Group Factor
Analysis problem, where the task is to find dependencies between all possible subsets
of the views. By building on the group-wise sparsity assumption used for CCA we were
able to derive a model that finds efficiently all types of dependencies present in the data
collection, even though their potential number grows exponentially as a number of views
[5]. The model is illustrated in Figure 4.1.

The task in the matching problem is to infer the co-occurrence of the samples from the
data set itself. For example, given a collection of documents written in two languages, we
might want to learn which documents correspond to each other. In [6] we show how such a
match or alignment can be learned simultaneously while learning a model that maximizes
the dependency between the two views, by an algorithm that alternates between learning
the match and learning a subspace in which the samples can be compared with each
other. We also demonstrated how multiple matching solutions can be combined to learn
a consensus match over multiple data set instances, to learn a match between metabolites
of two species.

The samples co-occurring in the multiple views can also be associated with covariates
(labels); then the analysis problem becomes to discover how the different populations
indicated by the labels differ from each other, akin to analysis of variance (ANOVA). The
problem is particularly difficult in the “large p, small n” case ubiquitous in computational
molecular biology, of having a high dimensionality p and a small sample size n. In [7] we
introduced a solution combining both multi-view and multi-way learning, by building a
Bayesian model that models the covariate effects in the latent space, assuming the views
to be conditionally independent given the latent variable, similarly as in the above models.
This kind of models and their applications in computational systems biology are discussed
in detail in Chapter 5.
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Figure 4.1: Illustration of the group factor analysis of three data sets or views. The feature-
wise concatenation of the data sets Xi is factorized as a product of the latent variables Z
and factor loadings W. The factor loadings are group-wise sparse, so that each factor is
active (gray shading, indicating fm,k = 1) only in some subset of views (or all of them). The
factors active in just one of the views model the structured noise, variation independent
of all other views, whereas the rest model the dependencies. The nature of each of the
factors is learned automatically, without needing to specify the numbers of different factor
types (whose number could be exponential in the number of views) beforehand.
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4.3 Multi-task learning

We have introduced two new multi-task learning setups, suitable for different scenarios,
and solutions for them: asymmetric multi-task learning and multi-task multiple kernel
learning.

4.3.1 Asymmetric multi-task learning

Multi-task learning is the setting where several collections of data samples are analyzed
together; each collection represents a different learning task and comes from a different
underlying distribution: for example, measurements of student performances in different
schools, or scientific documents collected from different venues. The task is usually a
supervised task, classification or regression, but may also be an unsupervised task such
as clustering or density estimation. Often the data are high-dimensional and the number
of data points in each individual task is too small for learning well the subtle distinctions
necessary for good performance in the task.

Unlike in multi-view learning, in multi-task learning the individual samples in the data
sources do not typically co-occur. Instead it is assumed that there are connections on
the population level: if the underlying distributions in the tasks have similar properties
(similar trends, groupings, manifolds, etc.) then learning the tasks together allows sharing
the data between tasks, making possible learning of more complex models.

Typical multi-task learning solutions are based on treating all of the learning tasks sym-
metrically (with equal interest), for example by learning a hierarchical probabilistic model
from all of the data collections where the models share parameters or priors of param-
eters; then all the data collections affect learning the shared parameters with an equal
role. However, in many settings there is instead a task of interest (such as gene expression
measurements of the current patient) where we wish to perform well and where test sam-
ples will come from, and other tasks are simply additional sources of information (such as
historical records of earlier patients). In such settings the learning should be asymmetric
multi-task learning: it should focus on learning the task of interest as well as possible,
avoiding the danger of skewing the model of the task of interest in favor of modeling other
tasks, which can happen in some symmetric approaches.

We have introduced a formalism for asymmetric multi-task learning, focusing on learning a
classification task or regression task of interest with the help from auxiliary tasks that are
related but are of less interest. On an intuitive level the idea is to extract only the relevant
information of earlier data sets to help the learning of the task of interest. Technically, we
use an intelligent mixture model, where each earlier task is explained partly by a shared
model and partly by a task-specific explaining-away model. The task-of-interest, where
everything is relevant, only uses the shared model, while other tasks are partly explained
away by the explaining-away model.

Two kinds of methods were derived from this approach: a method for asymmetric mul-
titask logistic regression [2], and a method for asymmetric multitask Gaussian process
regression or classification [1]. In the logistic regression case, the model was formulated as

pS(c|x) = (1 − πS)pshared(c|x) + πSpexplaining−away
S (c|x)

where x are samples c are class labels, pshared(c|x) is a model shared between all tasks,
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Figure 4.2: Graphical model of an asymmetric multi-task Gaussian process regression
model, showing the relationship between the function values of the primary task (task of
interest) and secondary tasks (other tasks).

pexplaining−away
S (c|x) is a model to explain away non-relevant parts of task S and πS is a

mixture weight. In a Gaussian process regression context this can be similarly written as

y = fS(x) = f shared(x) + f explaining−away
S (x)

where the y are regression targets, f shared(x) is a shared regression function and

f explaining−away
S (x) is a function to explain away non-relevant regression variation of task

S, and the functions are drawn independently from Gaussian process priors.

The methods were shown to outperform both naive approaches, such as single-task learn-
ing or pooling together all tasks, and also the nearest comparable symmetric multi-task
learning approaches.

4.3.2 Multi-task multiple kernel learning

Empirical success of kernel-based learning algorithms is very much dependent on the ker-
nel function used. Instead of using a single fixed kernel function, multiple kernel learning
algorithms learn a combination of different kernel functions in order to obtain a similar-
ity measure that better matches the underlying problem. We study multi-task learning
problems and formulate a novel multi-task learning algorithm [3] that trains coupled but
nonidentical multiple kernel learning models across the tasks. The proposed algorithm is
especially useful for tasks that have different input and/or output space characteristics
and is computationally very efficient. Empirical results on three data sets validate the
generalization performance and the efficiency of our approach.
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4.4 Information visualization

Information visualization is an essential part of analysis of new data, especially in the first
stages when strong hypotheses about the data have not been made yet. Many dimension-
ality reduction methods have been designed for tasks such as manifold learning and are
not suitable for reducing the data much beyond the effective dimensionality of data. A
visualization on a low-dimensional display cannot represent all aspects of high-dimensional
data: it is then crucial to be able to quantify the errors that unavoidably occur in any
visualization.

We have formalized information visualization as a task of visual information retrieval
[1, 2], focusing on the specific task of retrieving similar items (retrieving neighborhood
relationships) for a query item based on the visual display. In this task, all visualizations
naturally end up with two kinds of errors, false neighbors and misses. The accuracy of such
retrieval can be rigorously quantified using the information retrieval measures precision
and recall. The analyst needs to specify a tradeoff between precision and recall (tradeoff
between the costs of false neighbors and misses) to evaluate the goodness of visualizations.
Moreover, generalizations of such measures can be directly set as an optimization goal,
to produce visualizations that are optimal for information retrieval. We have also shown
that optimizing visualizations for information retrieval can be done in the framework of
generative modeling [3]. We have created nonlinear embeddings optimal for information
retrieval, and have shown that they outperform existing visualization methods in the
information retrieval tasks, and also by commonly used indirect measures.

We have applied the approach to visualization of graphs (graph layout) [4], fMRI data
(Fig 4.3), and gene expression measurements (e.g., [5]).
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Figure 4.3: Visualization of fMRI whole-head volumes from an experiment with several
people experiencing multiple stimuli. The visualization has been optimized for information
retrieval of similar (neighbor) images from the visualization. The four stimuli types (red:
tactile, yellow: auditory tone, green: auditory voice, blue: visual) have become separated
in the visualization; the two auditory stimuli types are arranged close-by as is intuitively
reasonable. An axial slice is shown for each whole-head volume, chosen so that the shown
slice contains the highest-activity voxel.


