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5.1 Introduction

The accumulation of different types of high-throughput measurement data yields unprece-
dented opportunities to study specific biological questions in context of the big picture of
genome biology. It remains a major challenge how to process, analyze, and exploit this
wealth of data such that the findings generate useful biomedical hypotheses and advance
our understanding of cellular processes. As the number of molecular players, such as genes
and metabolites, is extremely large compared to the number of available measurements,
deciphering their function and functional interactions is highly non-trivial. In addition,
regulatory elements within the genomic sequence are known only to a small extent, and
the number of potential candidate regions is enormous. Thus, a main concern of compu-
tational systems biology is to detect statistical relationships between data points as well
as variables in high-dimensional and potentially heterogeneous data spaces.

Our research focuses on three major topics. The first theme is translational model-
ing in medical studies; the ultimate goal is to predict biological responses to treatment
across different tissues as well as from model organisms to human. The second theme is
data-driven comparison and retrieval of gene expression experiments; measurements from
different laboratories and different biological conditions are brought together in a common
modeling framework to discover similarities or dissimilarities of samples regarding their
transcriptional characteristics. The third theme is data integration, modeling of heteroge-
neous data sets that provide multiple views on the same biological samples or entities, e.g.,
gene expression measurements, genome methylation profiles, and copy number changes.
The task is to detect shared aspects as well as source-specific aspects by looking at depen-
dencies between the views. The three topics are described in more detail in the following
sections. In addition, we have developed probabilistic models for decomposing biological
networks into functional modules [12], and for estimating probe reliability in microarray
measurements [8].

We have worked in close collaboration with VI'T (Prof. M. Oresi¢), Haartman In-
stitute (Prof. S. Knuutila), European Bioinformatics Institute EBI (Prof. A. Brazma),
Department of Biological and Environmental Sciences at University of Helsinki (Prof. J.
Kangasjdrvi), Institute for Molecular Medicine Finland FIMM (Prof. O. Kallioniemi), and
Institute of Biomedicine (Dr. Sampsa Hautaniemi).
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5.2 Translational modeling for molecular medicine

We develop probabilistic machine learning methods for translational tasks motivated by
research questions in molecular medicine. We are addressing computational modeling
problems, with the aim to ultimately assist in approaching the following tasks: (i) to
predict the response to disease and its medical treatments in the complex biological system
of a human being, based on experiments on model organisms and cell lines, and (ii) to
decrease the need for invasive operations on human patients, by detecting dependencies
between views that are hard and easy to observe (e.g., study of the state of an inner organ
based on blood levels).

In our research, we have developed machine learning methods for estimating the effects
of multiple experimental factors. These solutions take ANOVA-type modeling beyond
the possibilities of the classical approaches. We have presented ways of detecting similar
responses between multiple tissues of a patient, and between the patient and a model
organism. We have utilized the novel methods in current metabolomic studies of human
diseased and their medical treatments.

Disease-related dependencies between multiple tissues. We developed a data
fusion method [5], which allows us to detect dependencies between multiple tissues of a
biological organism that are related to known experimental factors, such the disease status
and medical treatment (Figure 5.1b). Many diseases such as cancer may be located in a
specific organ whose state is not directly observable without invasive operations. Our
method provides a way of making predictions of the hard-to-measure tissue via more
readily observable samples, such as from the blood.

Multi-way modeling made possible for heterogeneous clinical data sets. We
have developed ANOVA-type modeling of responses to multiple experimental factors fur-
ther for heterogeneous time series data [6] (Figure 5.1¢). One of the major complications
in the analysis of clinical studies of humans has been the heterogenity of individual his-
tories in the medical records. By utilizing dynamical generative models, we separated
progression into disease from normal aging-related development of individuals. For an-
other clinical study [18], our ANOVA-type modeling approach for high-dimensional data
was extended to the repeated measures setting, where the blood levels of each patient are
observed both before and after the medical treatment.

Matching objects of multiple views. The major obtacle for translational studies is
the lack of one-to-one mapping between the biological systems of the different organisms.
Even the approximate mapping is often unknown. We have developed a novel matching
algorithm for simultaneously (i) learning a metric to maximize the dependency between
two data sets, and (ii) matching the objects between the data sets [16].

Disease-related responses across several species. The goals of translational cross-
species modeling are to (i) find similarities between the responses measured in two domains
(human, model organism), and (ii) predict the outcome of a new intervention in one of
these domains based on a similar realized experiment in the other domain. An important
application lies in pharmaceutics, where the effect of a new drug on the development of
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Figure 5.1: Tllustration of the four data analysis tasks common in translational modeling
for molecular medicine.
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a human disease is studied with animals or tissues grown in laboratory, and later further
tested with clinical studies on human patients. From the computational perspective, the
translation of experiments is an unsolved problem, as neither variables nor samples are
matched between the domains (Figure 5.1d).

We have introduced a model for matching groups of variables between the two domains
based on their similarity in responses to relevant experimental factors [6]. Further, we
separated domain-specific responses from the responses shared by the domains [13, 14].

Model organism study for type 1 diabetes. Metabolic development in children
progressing into Type 1 Diabetes (T1D) is not well understood. As members of an in-
terdisciplinary consortium, we have studied the development of T1D through a model
organism [15]. By comparing the results with a similar follow-up study of human chil-
dren, we found out that before the onset of the disease, female NOD mice exhibit the
same lipidomic pattern as pre-diabetic human children. The results suggest alternative
metabolic-related pathways as therapeutic targets to prevent the disease. These biologi-
cal findings were made possible by methods for learning a data-driven model that maps
human and mouse lipidomes.

We have proposed translational modeling methods for detecting dependencies between
heterogeneous data sets as well as estimating and predicting effects of relevant experimen-
tal factors across domains. The methods have been designed to work with high-dimensional
biological real-world data.
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Figure 5.2: Figure taken from Caldas et al. [1]. Data-driven retrieval performance based on
Normalized Discounted Cumulative Gain (NDCG); a measure of effectiveness of a search
engine. The box plot summarize the distribution NDCG results for 219 interpretable query
comparisons. “LDA” corresponds to our earlier method while REx corresponds to [1].

5.3 Data-driven comparison and retrieval of gene expression
experiments

Considerable effort has been spent on collecting gene expression measurements into huge
public repositories. This has opened up the door to large-scale comparisons and meta-
analysis of data from different experiments. We have developed probabilistic methods that
assist in these analysis tasks. In addition, we have introduced the concept of model-based
retrieval of relevant biological experiments.

Content-based retrieval of relevant experiments. In previous work, we developed
the first prototype of a content-based retrieval engine for biological experiments (REx: Re-
trieval of Relevant Experiments). To complement keyword search functionalities provided
by most repositories for retrieval of similarly annotated studies, we developed probabilis-
tic machine learning methods that relate gene expression studies through their actual
measurement data, along with visualization tools that allow exploring and interpreting
the results. The “model of biology” underlying our retrieval method is both data- and
knowledge-driven: we use enrichment analysis for known functional gene sets (pathways)
to obtain a representation of expression data that is comparable across measurement plat-
forms. In [1], we extended the REx work to handle arbitrary experimental designs and to
use a more accurate approach for modeling the activity of gene sets. In addition, the new
REx model takes into account correlations in the activity of gene expression patterns. We
also proposed a novel performance evaluation approach that is based on the Experimental
Factor Ontology (EFO) of the ArrayExpress database and thereby much more scalable
than manual relevance classification.

In a thorough comparison with alternative methods, REx performs competitively (see
Figure 5.2). The advantage of our method lies in the interpretability of search results
in terms of differential expression patterns. A previously unknown connection between
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Figure 5.3: Figure taken from [10]. Organism-wide analysis of transcriptional responses in
a human pathway interaction network reveals physiologically coherent activation patterns
and tissue-specific regulation. One of the subnetworks and its tissue-specific responses, as
detected by the NetResponse algorithm is shown. The expression of each gene is visualized
with respect to its mean level of expression across all samples.

differential expression of the SIM2s gene and malignant pleural mesothelioma (MPM)
suggested by our method in one of the case studies was experimentally verified in a new
set of mesothelioma samples. Our work shows that the relatively unexplored paradigm of
data-driven information retrieval in transcriptomics data offers the possibility of obtaining
novel biological findings based on existing data, and holds the potential to ultimately
accelerate biomedical research. A further extension of REx based on targeted regulatory
models of gene expression has been submitted for publication.

Network-guided transcriptional response patterns. Different biological conditions
(and tissues) can share the same cellular processes, which can be characterized by coor-
dinated up- and down-regulation patterns in a specific set of genes, building so-called
transcriptional signatures. Pathways and functional gene sets stored in public databases
are typically not provided with information on the biological context of activation and
generally too broad to define condition-dependent transcriptional signatures. We have
developed an algorithm to detect gene sets that partition the biological conditions into
groups where each group is characterized by a coherent activation pattern, modeled by a
specific underlying signature (see Figure 5.3) [10]. The patterns are learned directly from
gene expression data; to guide the analysis towards biologically interpretable signatures,
the method exploits a network of known gene interactions to incrementally build larger
candidate gene sets.

Hierarchical biclustering. Biclustering is the computational task of simultaneously
clustering objects and inferring which features of the objects contribute to the group-
ing. Biclustering approaches are very popular in gene expression analysis, assisting in
simultaneously uncovering relationships among biological samples and among genes. Our
approach [2, 3] has two main contributions to the biclustering world: First, it applies the
Bayesian framework to rigorously account for noise and uncertainty. Second, it learns
a hierarchical tree structure for the samples, assigning characteristic genes to the nodes
in the hierarchy. The model additionally yields natural information retrieval relevance
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measures that can be used for relating samples to a query, making it eligible for the REx
applications described above. The method outperformed four state-of-the-art biclustering
procedures on a large miRNA data set.
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5.4 Detection of dependencies between heterogeneous bio-
logical data types

Living cells are extremely complex systems, and hence integration of information from
multiple sources is needed for accurate identification of underlying biological processes.
We consider the data fusion problem of combining two or more data sources where each
source consists of vector-valued measurements from the same object or sample, but on
different variables. The task is to detect aspects that are shared between different sources
as well as source-specific components.

Bayesian Group Factor Analysis for understanding drug action mechanisms.
We decomposed the dependencies between drug structures and their biological responses
in multiple diseases, using a novel method called Group Factor Analysis (GFA) [17]. Un-
like standard QSAR methods, which relate drug properties and univariate responses, we
find relationships between a set of structural descriptors of drugs and their genome-wide
responses. GFA is a novel extension to factor analysis that models dependencies between
sets of variables (“views”) instead of variables, representing them as group-wise sparse
factors (see Figure 5.4). Unlike existing methods, GFA finds sparse factors shared by
subsets of views (most interesting) along with those shared by all and those specific to one
view.

In [7], we present details of the decomposed drug response relationships. With GFA, we
are able to find factors that capture variation between chemical descriptors and biological
responses in one, two, or all three diseases. The factors form hypotheses about drug re-
sponse patterns, allowing us to relate specific chemical descriptors with targeted cellular
responses. We find four main types of factors: (i) Factors shared by the chemical view and
a subset (one or two) of the cell lines. These factors give hypotheses for drug responses
specific to cancer type and are hence the most interesting ones. (ii) Factors shared by all
cell lines and the chemical space, representing drug effects common to all three subtypes
of cancer. (iii) Factors shared by all cell lines but not the chemical space. They are either
drug effects not captured by the specific chemical descriptors used, or common biological
response to the modulation of two or more different targets which can not be captured
by any common chemical description. (iv) Factors specific to one view represent ”biolog-
ical noise”. Our analysis shows that the discovered factors not only capture meaningful
biological dependencies but are also more predictive of protein targets than similarly but
individually analyzed chemical and biological response spaces.

Survival-associated biomarkers from multi-view functional genomics data. Ge-
nomic instability is a hallmark of cancer and high-throughput measurements of copy-
number variation data have become commonplace in cancers. Given that copy-number
alterations are noisy, one of the most successful approaches in increasing the reliability of
putative driver genes involved in tumor progression and drug resistance is integration of
copy number data with transcriptomics data. In [11], we demonstrate the benefits of using
a systematic computational framework to include algorithms that enable indentification
of context and clinically important patient groups. The results provide genes and ge-
nomic regions that have survival effect in Glioblastoma or a clinically defined subset, such
as temozolomide-treated patients, and thus facilitate translation of large-scale biomedical
data to knowledge.
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Figure 5.4: Tlustration of the group factor analysis on three cell lines (diseases) and
chemical view. The feature-wise concatenation of the data sets X, is factorized as a
product of the latent variables Z and factor loadings W. The factor loadings are group-
wise sparse, so that each factor is active (gray shading) only in some subset of views (or
all of them). The factors active in just one of the views model the structured noise, that
is, variation independent of all other views, whereas the rest model the dependencies. The
W shows the activity of the GFA factors in the 3 diseases (cell line 1: HL60, 2: MCF7, 3:
PC3) and the drug descriptors (chemical view).
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Figure 5.5: The analysis pipeline: A. Plate diagram for the canonical correlation analysis
that captures the shared patterns Z from two data sources X and Z. B. Histograms
of patients’ contribution for four different genomic regions that have significantly high
dependence scores; these histograms are used to form patient groups based on quantile
clustering of the histogram. C. Sample Kaplan-Meier survival curve comparing the two
patient groups for the genomic region centered at MCM10 gene; the patients with high
dependence score have better survival than patients with low dependence scores, X-axis:
months, Y-axis: percentage of GBM patients alive, dotted lines: 95% confidence intervals.

In [4], we present details of the approach used to identify potential genomic regions (or
biomarkers) that effectively stratify patients in low and high survival groups. We first
identify chromosomal regions that have high dependency between gene expression, methy-
lation, and copy number changes, and then form patients groups from the regions and
check whether the identified genomic aberrations have survival association (see Figure 5.5).
The integration model is based on our earlier method for constrained canonical correlation
analysis [9]. In addition, we incorporate suitable priors that model the positive correlation
between gene expression and copy number data and the negative correlation between gene
expression and methylation data. Furthermore, we incorporate sample-specific covariates
in advanced survival analysis techniques. Results on Glioblastoma multiforme (GBM)
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patient measurements identify known and novel genomic regions that may contribute to
GBM progression and drug resistance.
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