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8.1 Introduction

Automatic speech recognition (ASR) means an automated process that inputs human
speech and tries to find out what was said. ASR is useful, for example, in speech-to-text
applications (dictation, meeting transcription, etc.), speech-controlled interfaces, search
engines for large speech or video archives, and speech-to-speech translation.

Figure 8.1 illustrates the major modules of an ASR system and their relation to ap-
plications. In feature extraction, signal processing techniques are applied to the speech
signal in order to dig out the features that distinguish different phonemes from each other.
Given the features extracted from the speech, acoustic modeling provides probabilities
for different phonemes at different time instants. Language modeling, on the other hand,
defines what kind of phoneme and word sequences are possible in the target language or
application at hand, and what are their probabilities. The acoustic models and language
models are used in decoding for searching the recognition hypothesis that fits best to the
models. Recognition output can then be used in various applications.
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Figure 8.1: The main components of an automatic speech recognition system and their
relation to speech retrieval and machine translation applications.

Our focus in ASR is large vocabulary continuous speech recognition (LVCSR). For
several years, we have been developing new machine learning algorithms for each of the
subfields and building a complete state-of-the-art recognizer to evaluate new methods and
their impact. Originally, the recognizer was constructed for fluent and planned speech
such as Finnish newsreading, where language models covering a very large vocabulary are
required. Besides newsreading, other example tasks are political and academic speeches
and other radio and television broadcasts where the language used is near the written style.
Sofar, we have not seriously attempted to recognize Finnish spontaneous conversations,
because enough Finnish training texts for learning the corresponding style do not exist.
Our main training corpus for language modeling is the Finnish Language Bank at CSC.
For acoustic modeling we use voice books, Finnish Broadcast Corpus at CSC and the
SPEECON corpus.

In addition to the recognition of Finnish, we have performed experiments in English,
Turkish and Estonian. To make this possible we have established research relations to
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different top speech groups in Europe and U.S., e.g. University of Colorado, International
Computer Science Institute ICSI, Stanford Research Institute SRI, IDIAP, University of
Edinburgh, University of Sheffield, University of Cambridge, Bogazici University, and
Tallinn University of Technology. The forms of collaboration have included researcher
exchanges, special courses, workshops and joint research projects. We have also partici-
pated in several top international and national research projects funded by EU, Academy
of Finland, Tekes, and our industrial partners. In the close collaboration with our Natural
Language Processing group 10 we are also organizing an international competition called
Morphochallenge to evaluate the best unsupervised segmentation algorithms for words
into morphemes for information retrieval, statistical machine translation, LVCSR and lan-
guage modeling in different languages. This challenge project is funded by EU’s PASCAL
network and described in Chapter 10.

In the EU FP7 project called EMIME, the aim is to develop new technologies for
speech-to-speech systems. Although this has broadened the field of the group to include
some aspects of speech synthesis, such as supervised and unsupervised adaptation in the
same way as in ASR, text-to-speech (TTS) still plays a minor role compared to the strong
ASR focus of the group.
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8.2 Acoustic modeling

Acoustic modeling in automatic speech recognition means building statistical models for
some meaningful speech units based on the feature vectors computed from speech. In
most systems the speech signal is first chunked into overlapping 20-30 ms time windows at
every 10 ms and the spectral representation is computed from each frame. A commonly
used feature vector consists of mel-frequency cepstral coefficients (MFCC) which are the
result of the discrete cosine transform (DCT) applied to the logarithmic mel-scaled filter
bank energies. Local temporal dynamics can be captured by concatenating the first and
second order delta features (time differences) to the basic feature vector.

The acoustic feature sequence in ASR is typically modeled using hidden Markov models
(HMM). In basic form each phoneme is modeled by a separate HMM, where the emission
distributions of the HMM states are Gaussian mixtures (GMMs). In practice, however,
we need to take the phoneme context into account, so that for each phoneme there are
separate HMMs for various phoneme contexts. This leads easily to very complex acoustic
models where the number of parameters is in order of millions.

Estimating the parameters of complex HMM-GMM acoustic models is a very chal-
lenging task. Traditionally maximum likelihood (ML) estimation has been used, which
offers simple and efficient re-estimation formulae for the parameters. However, ML esti-
mation does not provide optimal parameter values for classification tasks such as ASR.
Instead, discriminative training techniques are nowadays the state-of-the-art methods for
estimating the parameters of acoustic models. They offer more detailed optimization cri-
teria to match the estimation process with the actual recognition task. The drawback is
increased computational complexity. Our implementation of the discriminative acoustic
model training allows using several different training criteria such as maximum mutual
information (MMI) and minimum phone error (MPE) [1]. It also enables alternative op-
timization methods such as gradient based optimization and constrained line search [2] in
addition to the commonly used extended Baum-Welch method.

Our recent research has taken advantage of the flexibility of our system to use different
discriminative training criteria by comparing different discriminative training methods in
various configurations [3]. The research showed some guidelines in how to apply certain
discriminative training methods in large scale acoustic model estimation.

The speech syntesis work related to the EMIME EU/FP7 project concentrates on the
adaptation of HMM-based TTS models. The goal of the project is to personalize the
output voice of a cross-lingual speech-to-speech system, to make it resemble the voice of
the original speaker.

The features and models of TTS systems differ somewhat from those used in ASR.
A shorter timestep, typically 5 ms is used, and the count of cepstral coefficients is twice
or thrice that of typical ASR features. The acoustic models do not use GMMs - simple
single-Gaussian models are used, but the amount of models is much higher. The TTS
models are context-dependent on a more complicated level compared to the ASR models.
A single phoneme has different models depending on its position within a word, syllable
and sentence, as well as the surrounding phonemes.

Training acoustic models for high-quality voice for a TTS system therefore requires
data of close to 1000 high-quality sentences from the target speaker. As this much data
is not available in the target application of the project, the only feasible option is to train
an average TTS voice and use adaptation techniques to change it to resemble the target
speakers voice.

The adaptation of HMM-based TTS models is very similar to adaptation of ASR mod-
els. Maximum a posteriori (MAP) linear transformations are applied in similar fashion to
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Figure 8.2: The HTS speech synthesis system for generating an average voice, adapting it
to a target speaker and creating synthesized speech. From [4].

ASR adaptation. A collaborative investigation using data from several languages showed
that adapting a general voice is a practical and effective way to mimic a target speaker’s
voice[4].
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8.3 Language modeling

In topic adaptation of language models, we take into account the underlying topic of
speech by elevating the probabilites of the subvocabulary characteristic to its topic. Via
topic adaptation, we aim at improving the recognition of topically important words. The
potential benefit of topic adaptation relies on the success of retrieving the underlying topic
correctly. In the master’s thesis [1], we discuss the topic adaptation task in relation to
multimodal interfaces. In the multimodal scenario, the contextual cues with which the
topic is retrieved can not be assumed reliable nor large in size. The experiments with
English large vocabulary speech recognition task showed that topic adaptation with these
cue assumptions is feasible. The master’s thesis was conducted as a part of projects Pin-
View and UI-ART focusing on multimodal interfaces.

For Finnish, estimating the language model probabilities for words is difficult since
there is a vast number of different word forms. For example, a single verb has theoretically
thousands of inflected word forms. The natural way to attack the problem is to split words
into smaller fragments and build the language models on the fragments instead of whole
words. Since it is not obvious how the words should be split, we have studied what kind
of word fragments are optimal for speech recognition systems. Experiments in Finnish,
Turkish and Estonian recognition tasks indicate that an unsupervised data-driven splitting
algorithm called Morfessor (see Section 10.2) improves recognition of rare words. [2]

In speech recognition systems solutions to the problem of vocabulary growth in mor-
phologically rich languages proposed in the literature include increasing the size of the
vocabulary and segmenting words into morphs. However, in many cases, the methods
have only been experimented with low-order n-gram models or compared to word-based
models that do not have very large vocabularies. In [3] we study the importance of us-
ing high-order variable-length n-gram models when the language models are trained over
morphs instead of whole words. Language models trained on a very large vocabulary
are compared with models based on different morph segmentations. Speech recognition
experiments are carried out on two highly inecting and agglutinative languages, Finnish
and Estonian. The results suggest that high-order models can be essential in morph-based
speech recognition, even when lattices are generated for two-pass recognition. The anal-
ysis of recognition errors [4] reveal that the high-order morph language models improve
especially the recognition of previously unseen words.
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8.4 Applications and tasks

Speech retrieval and indexing

Large amounts of information is produced in spoken form. In addition to TV and radio
broadcasts, more and more material is distributed on the Internet in the form of podcasts
and video sharing web sites. There is an increasing need for content based retrieval of
this material. Speech retrieval systems consist of two parts. First, an automatic speech
recognition system is used to transcribe the speech into textual form. Second, an index is
built based on this information.

The vocabulary of the speech recognizer limits the possible words that can be retrieved.
Any word that is not in the vocabulary will not be recognized correctly and thus can not
be used in retrieval. This is especially problematic since the rare words, such as proper
names, that may not be in the vocabulary are often the most interesting from retrieval
point of view. Our speech retrieval system addresses this problem by using morpheme-like
units produced by the Morfessor algorithm. Any word in speech can now potentially be
recognized by recognizing its component morphemes. The recognizer transcribes the text
as a string of morpheme-like units and these units can also be used as index terms. We
have shown that the morph-based approach for speech search suffers significantly less from
OOV query words than a word based method [1].

Retrieval performance was further improved by utilizing alternative recognition can-
didates from the recognizer [1]. Speech recognizers typically produce only the most likely
string of words, the 1-best hypothesis. Retrieval performance is decreased if a relevant
term is misrecognized and is thus missing from the transcript. However, it is possible
that the correct term was considered by the recognizer but was not the top choice. Thus,
retrieval performance can be improved by extracting these alternative results from the
recognizer and adding them to the index. A confusion network [2] provides a convenient
representation of the competing terms along with a probability value for each term.

Figure 8.3: A confusion network of alternative recognition candidates for a segment of
speech. <w> marks a word break boundary. The correct morphs are in bold.

Speech-to-speech translation

Speech-to-speech machine translation is in some ways the peak of natural language process-
ing, in that it deals directly with our (humans’) original, oral mode of communication (as
opposed to derived written language). As such, it presents several important challenges:

1. Automatic speech recognition of the input using state-of-the-art acoustic and lan-
guage modeling, adaptation and decoding

2. Statistical machine translation of either the recognized most likely speech transcript
or the confusion network or the whole lattice including all the best hypothesis
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3. Speech synthesis to turn the translation output into intelligible speech using the
state-of-the-art synthesis models and adaptation

4. Intergration of all these components to aim at the best possible output and tolerate
errors that may happen in each phase

A pilot study of Finnish-English speech-to-speech translation was carried out in the
lab as a joint effort of the Speech Recognition, Natural Language Processing (Ch. 10)
and Computational Cognitive Systems (Ch. 11) groups [3]. The domain selected for
our experiments was heavily influenced by the available bilingual (Finnish and English)
and bimodal (text and speech) data. Because none is readily yet available, we put one
together using the Bible. As the first approach we utilized the existing components, and
tried to weave them together in an optimal way. To recognize speech into word sequences
we applied our morpheme-based unlimited vocabulary continuous speech recognizer [4].
As a Finnish acoustic model the system utilized multi-speaker hidden Markov models
with Gaussian mixtures of mel-cepstral input features for state-tied cross-word triphones.
The statistical language model was trained using our growing varigram model [5] with
unsupervised morpheme-like units derived from Morfessor Baseline [6]. In addition to the
Bible the training data included texts from various sources including newspapers, books
and newswire stories totally about 150 million words. For translation, we trained the Moses
system [7] on the same word and morpheme units as utilized in the language modeling
units of our speech recognizer. For speech synthesis, we used Festival [8], including the
built-in English voice and a Finnish voice developed at University of Helsinki. Further
research on statistical machine translation is described in Section 13.
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8.5 Noise robust speech recognition

Missing feature approaches

Using missing feature methods for noise compensation in automatic speech recognition is
based on partitioning the compressed spectrographic representation of a noise corrupted
speech signal to speech dominated i.e. realiable regions and noise dominated i.e. unreliable
regions as illustrated in Figure 8.4. Information in the unreliable regions is assumed
missing, so either the speech recognition system should ignore the unreliable components
or the missing values be reconstructed using e.g. cluster-based imputation [1]. Experiments
reported in [2] suggested that cluster-based imputation can significantly improve LVCSR
performance under environmental noise but may not fully allow for simultaneous speaker or
environment-based adaptation. We therefore modified the method to account for acoustic
model adaptation estimated prior to reconstruction, which improved the speech recognition
performance in certain noise environments as discussed in [3]. Additionally, we have
been developing missing feature techniques that are particularly robust in the presence
of reverberation noise [4, 5] and models that mimic certain principles of human speech
recognition especially in the binaural system [6].
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Figure 8.4: Logarithmic mel spectrogram of (a) an utterance recorded in quiet environment
and (b) the same utterance corrupted with additive noise. The noise mask (c) constructed
for the noisy speech signal indicates the speech dominated regions in black and the noise
dominated regions in white.

Noise robust feature representations

One approach to noise robust speech recognition is to search for feature representations
that are less affected by changes in environmental noise. In particular, common feature
extraction schemes based on the short-time spectrum of the speech signal can be made
more robust by using an estimate of the spectral envelope instead.

The stabilised weighted linear prediction (SWLP) signal modeling method [7], recently
developed at the Department of Signal Processing and Acoustics at Helsinki University of
Technology, was used to implement a more robust variant of the MFCC features currently
used by our speech recognition system. The performance of the new features was evaluated
in different noisy real-world environments using the SPEECON corpus. Improvements in
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recognition rates were found in the case where acoustic models trained using clean speech
only were used to recognize speech corrupted by noise [8, 9].
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