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4.1 Introduction

We develop statistical machine learning methods for extracting useful regularities from
large, high-dimensional data sets. In practical computational data analysis tasks a com-
mon problem is lack of sufficient amount of representative data. Modeling requires either
data or prior knowledge which by definition does not exist in knowledge discovery or data
mining tasks. If there was enough data, modern statistical machine learning toolboxes
would contain powerful approaches to building flexible models that do not make strong
assumptions about data, but flexible models are naturally weak given little data.

In many applications, for instance in molecular biology and neuroinformatics, there is
data available in public or special-purpose databanks, but the problem is that not every-
thing is relevant. We are developing new machine learning methods capable of learning
from multiple data sources containing only partially relevant data, and generalizing to new
contexts. The methods extend and generalize the current approaches called multi-view,
multi-way and multi-task learning, on structured and unstructured domains.

Moreover, we have developed new principles and methods for the task of visualizing
high-dimensional data; this task is central in any knowledge discovery process.
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4.2 Multi-view learning

Multi-view learning tells how several data sources, or views, can be combined to extract
more relevant information. We focus on unsupervised settings, where the relevance comes
from statistical dependencies between multiple views of the same objects. For example,
a collection of images with captions can be represented with two views, one capturing
the contents of the image while the other describes the caption. Dependencies between
these representations reveal more information on the intended content, or semantics, of
the images than either view alone.

We have developed new theory for decomposing variation in multiple views into source-
specific and shared components [1], building on Bayesian latent-variable models that cap-
ture the dependencies by assigning flexible source-specific models for describing the noise
in each of the views. The same basic formulation extends to various practical models. A
prime example is [2] that applies hierarchical non-parametric Bayesian models for making
the source-specific parts extremely flexible, and builds a hierarchical grouping of human
genes based on both mRNA and protein expression. The model, illustrated in Figure 4.1,
reveals processes that could not be found by looking at either view alone.

Besides advanced Bayesian solutions, we have also developed novel multi-view algo-
rithms for application purposes. [4] aimed at creating an easy-to-use data integration tool
for bioinformatics applications and was accompanied by an open-source software pack-
age, while [3] introduces a fast algorithm for maximizing mutual information of linear
projections, applied to brain imaging data.

Going beyond standard multi-view learning, we have also developed novel solutions
for applications without co-occurring data. Traditional multi-view learning can only be
applied for cases with clear one-to-one co-occurrence between the views. We showed
in [5] that the co-occurrence itself can be learned by maximizing statistical dependency
between two views with no known co-occurrence. In brief, the idea is to order the samples
of one of the views so that the dependency between the views is maximal. This, in
turn, requires efficient means for measuring the dependency, provided by classical data
integration tools like canonical correlation analysis (CCA). A simple iterative algorithm
alternating between optimizing the ordering (solved through a linear assignment problem)
and finding a representation that maximally captures the dependency (solved through
CCA) finds the co-occurrences with high accuracy. We have applied the algorithm for
aligning probeset of various microarray brands, matching metabolite identities of different
species or measurement batches, and aligning sentences of bi-lingual corpora.
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Figure 4.1: (a): Illustration of the hierarchical Dirichlet process model for cluster analysis
of coupled data sources. (b): Application of the model on coupled analysis of mRNA
and protein concentrations. Both marginals correspond to clusters of genes, automatically
detected by the model, and the color-codes and letters indicate higher-level processes
obtained by simultaneous clustering of the contingency table of cluster assigments.
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4.3 Multi-task learning

We have introduced two new multi-task learning setups, suitable for different scenarios,
and solutions for them: relevant subtask learning and paired multi-task learning.

Relevant subtask learning

It is all too common in classification tasks that there is too little training data to estimate
sufficiently powerful models. The problem is particularly hard for the high-dimensional
data in genome-wide studies of modern bioinformatics, but appears also in image classifi-
cation from few examples, finding of relevant texts, etc.

After realizing that the world is full of other data sets, the problem becomes how
to simultaneously learn from a small data set and retrieve useful information from the
other data sets. We have recently introduced a learning problem called relevant subtask
learning, a variant of multi-task learning, which aims to solve the small-data problem by
intelligently making use of other, potentially related “background” data sets.

Such potentially related “background” data sets are available for instance in bioinfor-
matics, where there are databases full of data measured for different tasks, conditions or
contexts; for texts there is the web. Such data sets are partially relevant : they do not
come from the exact same distribution as future test data, but their distributions may
still contain some useful part. Our research problem is, can we use the partially relevant
data sets to build a better classifier for the test data?

Learning from one of the data sets is called a “task”. Our scenario is then a special
kind of multi-task learning problem. However, in contrast to typical multi-task learning,
our problem is fundamentally asymmetric and more structured; test data fits one task, the
“task-of-interest,” and other tasks may contain subtasks relevant for the task-of-interest,
but no other task needs to be wholly relevant.

We have introduced a method that uses logistic regression classifiers. The key is to
assume that each data set is a mixture of relevant and irrelevant samples. By fitting this
model to all data sets, the common model for relevant samples learns from all tasks. To fit
the model, we have used both simple maximum likelihood fitting [1] and more advanced
variational Bayesian inference [3]. We model the irrelevant part with a sufficiently flexible
model such that irrelevant samples cannot distort the model for relevant data. A sample
application is a news recommender for one user, where classifications from other users
are available (Fig. 4.2). The relevant subtask learner outperforms a comparable standard
multi-task learning model [4].

The generalization error of relevant subtask learning has been analyzed theoretically in
[5] in a slightly different setting, where the task is density estimation and supplementary
tasks are assumed to be mixtures of a shared interesting density and a non-interesting task-
specific density. Relevant subtask learning has smaller generalization error than learning
from the task-of-interest alone or from a supplementary task alone.

Paired Multi-task Learning

When faced with an abundance of tasks containing potentially relevant information to a
desired learning task, we ask: how can we decide which tasks are relevant? And what is
the relationship between the different tasks? Knowledge about the task relationships and
problem structure can then be exploited in jointly learning multiple tasks. By sharing
statistical strength between different tasks, this multitask learning set-up can overcome
potential problems when there is little data for a single task.
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Figure 4.2: Comparison of multi-task learning approaches on news article data. The
task was to predict relevance of news articles to a specific reader (the reader-of-interest),
using articles rated by other readers as additional sources of information. Results are
shown as a function of several design parameters: the proportion of relevant samples (top
left), data dimensionality (top right), the number of samples per data set (bottom left)
and the number of tasks (data sets; bottom right). Relevant subtask learning (vb-RSL)
outperforms a multi-task method that clusters tasks (SMTL; [4]) and to two naive methods
(“vb-STL” and “vb-AllTogether”) when there are many dimensions but few samples per
data set (less than 100), which is a realistic scenario.

We address a specific problem in bioinformatics: learning to choose control samples
for use in a differential gene expression experiment in cancer (case vs control). Gene
expression measurements are likely to contain bias due to factors such as patient-specific
and laboratory-specific effects, and typically there are only a small number of samples
available for each experimental condition. These factors make it problematic to select a
set of pairs of control and tumor tissue (case) samples, such that the differential gene
expression of the case samples is solely due to cancer-specific variation. However, there
is potentially a huge amount of useful information about cancer, and the relationship to
control tissue contained in publicly available gene expression databases. If two cancer
types are similar, then it is likely that they will use similar control samples.

The suitable controls for each experiment form a group of controls. These groups are
considered as classes / control tissues, and the task is to classify each case sample to
one of these classes. We formulate this as a multi-task learning problem in [2] where we
have a set of primary tasks (choosing the control class for each sample for a cancer type)
which we want to learn, and a set of auxiliary tasks (choosing the control class for each
control sample). This follows a paired structure, such that each primary task is paired
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Figure 4.3: Schematic illustration of statistical strength sharing in multitask learning sce-
narios. Learning a set of K tasks as in (a) amounts to finding different parameterisations
θi, i = 1, ...,K for the tasks. If the tasks are assumed to be related, multitask learning
approaches assume some shared structure across all K tasks through a common param-
eterisation via α (b). We consider the situation where there are K pairs of tasks (c),
and propose the structure in (d) to share information between the tasks. There is shared
structure within each task set’s parameterisation θ, θ′ through α, α′ and across each of the
K pairs through φ.

with a corresponding auxiliary task. We transfer information about the relatedness of
the auxiliary set of tasks to the set of primary tasks (see Figure 4.3 and its caption for
more details). We formulate the model using the Gaussian process framework; the task
functions are given Gaussian process priors and the task structure is modeled through the
parameterisation of the covariance functions. For each set of tasks, the task functions are
assumed to come from a linear combination of an underlying set of latent functions. This
linear combination, which models the inter-task similarity in each set, is constrained to be
the same for both the primary and auxiliary task set.

In learning the classification, we use knowledge about the relationships between the
case and the control samples. This pairing is transferred to new pairs, such that our model
can infer a suitable control sample for a new case sample (see Figure 4.4).
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Figure 4.4: Visualization of the probability distribution over the control classes (x axis)
for some tumor samples (y axis) with unknown control classes

[3] Jaakko Peltonen, Yusuf Yaslan, and Samuel Kaski. Relevant subtask learning by
constrained mixture models. Intelligent Data Analysis, to appear.

[4] Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji Krishnapuram. Multi-Task Learning
for Classification with Dirichlet Process Priors. Journal of Machine Learning Research,
8: 35–63, 2007.

[5] Keisuke Yamazaki and Samuel Kaski. An Analysis of Generalization Error in Relevant
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Figure 4.5: Plate diagram of the graphical model for Multi-Way, Multi-View Learning

4.4 Multi-way learning

Finding effects of one or multiple known covariates from the data is one of the most com-
mon statistical problems, commonly solved by tranditional Analysis of Variance (ANOVA),
its multivariate generalization (MANOVA), or in general by linear models. The traditional
methods are not applicable and very limited alternative methods exist to currently increas-
ingly important problems in molecular biology where the dimensionality of the problem p
is very large and the number of observations n is (relatively) small. The same “large p,
small n” problem recurs also in other fields.

In biological experiments typical covariates are disease, drug treatment groups, gender
or time-series, resulting in a multi-way experimental setup. The main challenge in biology
is that the number of samples (for instance mice or human patients) is small due to
economical and ethical cost, whereas the number of variables (such as genes or metabolites)
is huge. Due to this, the traditional multivariate methods cannot be used, and on the other
hand little research of multi-way analysis has been presented in the machine learning
literature.

We have recently introduced a Bayesian method for solving this burning problem of
multi-way analysis of small sample-size, high-dimensional datasets [1]. Moreover, the
multi-way data-analysis problem becomes even more complicated when heterogeneous
data with multiple covariates are integrated from multiple sources. Different data sources
usually have distinct, unmatched variable-spaces with different dimensionalities. We have
generalized ANOVA-type analysis to the case of multiple sources by considering the source
(“view”) as an additional covariate in the ANOVA-type analysis. The problem is impos-
sible for traditional methods due to the different variable-spaces, but by utilizing depen-
dencies between the sources the problem can be solved. We introduced a model (Figure
4.5; [2]) which is able to find the multi-way covariate-effects and to partion them into
shared and source-specific effects. The method is applicable to any small sample-size,
multi-source experiments, currently very popular in biological research.
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4.5 Information visualization

Visualization of mutual similarities of entries in large high-dimensional data sets is a
central subproblem in exploratory analysis and mining. It is makes sense to “look at the
data” in all stages of data analysis, and reducing the dimensionality to two or three gives
a scatterplot visualization.

It is generally not possible to show all the similarity relationships within a high-
dimensional data set perfectly on a low-dimensional display; some properties are nec-
essarily lost or misrepresented. All linear or nonlinear dimensionality reduction methods
must make a compromise about which kinds of similarity relationships they aim to show,
but which compromise is best for visualization? Many methods practically ignore this
question because they are not designed to reduce the dimensionality of the data set lower
than is possible without losing information; several such methods have difficulties when
producing low-dimensional displays. Some methods choose the compromise implicitly in
that they produce the lower-dimensional representation by minimizing a cost function,
but the cost function has not been motivated from the point of view of visualization, that
is, it is not obvious why a projection that minimizes the cost function should be a good
visualization.

It has been difficult to assess the quality of visualizations since the task of visualization
has not been well-defined. We have addressed this problem and introduced rigorously
motivated measures for the quality of a visualization, as well as a nonlinear dimensionality
reduction method that optimizes these measures and is therefore specifically designed for
optimal visualization.

Visualization as information retrieval

We view visualization as an information retrieval task. An analyst looking at a scatter-
plot can choose any point (data item) and find its neighbors (similar other items) in the
visualization. The visualization helps in this task of retrieving similar items, and quality
of retrieval can be measured with standard information retrieval measures precision and
recall. Any information retrieval method needs to make a compromise between these mea-
sures, parameterized by the relative cost of false positives and misses. Since a visualizer
is an information retrieval device as well, it needs to make the same compromise.

We have adapted the information retrieval measures to visualization by smoothing
them and representing them as differences between distributions of points being neighbors.
It turns out that the traditional measures are limiting cases of these more general measures.
Once the relative cost λ of false positives and misses has been fixed, we can directly
optimize the visualization to minimize the retrieval cost. We call the resulting visualization
method the Neighborhood Retrieval Visualizer (NeRV) [7, 8]. NeRV outperforms several
recent nonlinear dimensionality reduction methods both by the new measures and by
traditional measures.

We have extended NeRV to supervised visualization [4], to linear visualization [2], and
to visualization with ontological annotation [3].

In addition to NeRV, we have introduced methods for the specific application of visu-
alizing convergence of Markov chain Monte Carlo (MCMC) sampling methods commonly
used in Bayesian inference [5].

One of the popular nonlinear dimensionality reduction methods, Stochastic Neighbor
Embedding (SNE; [1]) is a special case of NeRV, corresponding to optimizing recall only.
We have additionally introduced other generalizations of SNE and efficient algorithms for
computing it, as described in the following.
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Figure 4.6: Demonstrating the precision-recall tradeoff in visualization. The task is to
retrieve neighbors of points in the original space, based on their locations in the visual-
ization. Top left: A three-dimensional dataset sampled from the surface of a sphere.
Bottom: Two embeddings of the dataset. In A, the sphere has been cut open and folded
out. This eliminates false positives (false neighbors), but there are some misses (missed
neighbors) because points on different sides of the tear end up far away from each other.
In contrast, B minimizes the number of misses by simply squashing the sphere flat; this
yields many false positives because points on opposite sides of the sphere are mapped close
to each other. Top right: mean precision–mean recall curves for the two projections. A
has better precision (yielding higher values at the left end of the curve) B has better recall
(yielding higher values at the right end of the curve).

Heavy-tailed Symmetric Stochastic Neighbor Embedding

Stochastic Neighbor Embedding (SNE) has been shown to be quite promising for data
visualization. Currently, the most popular implementation, t-SNE [6], is restricted to
a particular Student t-distribution as its embedding distribution. Moreover, it uses a
gradient descent algorithm that may require users to tune parameters such as the learning
step size, momentum, etc., in finding its optimum.

In [9], we have rigorously investigated the working mechanism of Heavy-tailed Symmet-
ric Stochastic Neighbor Embedding (HSSNE). The several findings are: (1) we propose to
use a negative score function to characterize and parameterize the heavy-tailed embedding
similarity functions; (2) this finding has provided us with a power family of functions that
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Figure 4.7: Comparison of visualization performance between several recent methods on a
data set of mouse gene expression profiles, in terms of two novel measures: mean smoothed
precision (vertical axis) and mean smoothed recall (horizontal axis). Our method NeRV
performs best (best values near the upper right corner).

convert distances to embedding similarities; and (3) we have developed a fixed-point algo-
rithm for optimizing SSNE, which greatly saves the effort in tuning program parameters
and facilitates the extensions and applications of heavy-tailed SSNE. We have presented
two empirical studies, one for unsupervised visualization showing that our optimization
algorithm runs as fast and as good as the best known t-SNE implementation and the
other for semi-supervised visualization showing quantitative superiority using the homo-
geneity measure as well as qualitative advantage in cluster separation over t-SNE. The
latter results are shown in Figure 4.8.
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values are produced using the fixed-point algorithm of the power family of HSSNE.
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4.6 Networks

Machine Learning is in the midst of a “structural data revolution”. After many decades of
focusing on independent and identically-distributed examples, many researchers are now
modelling inter-related entities that are linked together into complex graphs. A major
driving force is the explosive growth of heterogeneous data collected in diverse sectors of
the society. Example domains include bioinformatics, communication networks, and social
network analysis.

Networks are a special case of structural data. Inferring properties of the network
nodes, or vertices, from the links, or edges, has become a common data mining problem.
Network data are typically not a complete description of reality but come with errors,
omissions and uncertainties. Some links may be spurious, for instance due to measure-
ment noise in biological networks, and some potential links may be missing, for instance
friendship links of newcomers in social networks. Probabilistic generative models are a
tool for modeling and inference under such uncertainty. They treat the links as random
events, and give an explicit structure for the observed data and its uncertainty. Compared
to non-stochastic methods, they are therefore likely to perform well as long as their as-
sumptions are valid; they may reveal properties of networks that are difficult to observe
with non-statistical techniques from the noisy and incomplete data, and they also offer a
groundwork for new conceptual developments.

We have earlier introduced a family of Bayesian probablistic component models for
analyzing interactions or graphs, called Interaction Component Model (ICM). We applied
ICM to the task of detecting dense subnetworks from noisy protein-protein interaction
networks, and additionally from multiple views; protein-protein interactions and gene
expression data [2]. Such subnetworks are interpretable as functional gene modules or
protein complexes. Our methods outperformed other state-of-the-art methods in this task
of discovering functional subnetworks.

We further extended the ICM framework to handle multi-relational data [3], and to
detect block structures [1]. For example, protein complexes consist of tightly interacting
proteins, and the complexes in turn interact with other complexes.
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