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12.1 Introduction

Conceptual modeling is a task which has traditionally been conducted manually. In arti-
ficial intelligence, knowledge engineers have written descriptions of various domains using
formalisms based on predicate logic and other symbolic representations such as seman-
tic networks and rule-based systems. The development of expert systems in 1980s was
a notable example of such efforts. As a modern related attempt, the Semantic Web can
be mentioned. It seems that the complexity and changing nature of most of the domains
makes such formalisms problematic in many real-world applications.

A problem often neglected in symbolic knowledge representation tradition is subjec-
tivity. For us, it seems evident that major portions of individual conceptual systems are
learned. Due to the individual and cultural differences, it is not believable that concepts
could be modeled with static structures without making use of adaptive processes.

Another challenging topic related to conceptual modeling is contextuality. Contex-
tuality is illustrated in Fig. 12.1. Human activity takes normally place in rich contexts
in which the relationship between prototypical meanings of expressions and the situation
may be complex. Phenomena like subjectivity and contextuality serve as motivation for
the research that is described in the following.

Figure 12.1: An illustration of contextual effects in the interpretation of linguistic expres-
sions. There is a prototypical red but the redness of a shirt typically differs considerably
from the redness of skin or wine. In an image, white snow may not altogether be very
white.

The theories of knowledge have traditionally been based on predicate logic and related
methodologies and frameworks. The basic ontological assumption is that the world consists
of objects, events and relationships. The language and the conceptual structures are then
supposed to reflect rather straightforwardly this structure. Learning has been seen as
a means to memorize the mapping from the epistemological domain (to put it simply:
words) into the ontological domain (objects, events and relationships). This view has been
dominant at least partly because of the consistent formalization of the theory through the
use of symbolic logic. Moreover, the use of the von Neumann computer as the model or
metaphor of human learning and memory has had similar effects and has strengthened
the idea of the memory as a storage of separate compartments which are accessed and
processed separately and which are used in storing and retrieving information more or less
as such. [4]

Realistic simulations of the socio-economical and cultural levels are seemingly difficult
to build due to the complexity of the overall system. The richness of human culture
makes it difficult as a phenomenon to model. Moreover, already the world knowledge of
a single human being is so vast that it is difficult to approach it successfully. However,
useful development may be possible by taking into account the aspects presented, e.g., in
[9, 10, 1, 8, 3]. For instance, Vygotsky [10] has stated that “... the world of experience must
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be greatly simplified and generalized before it can be translated into symbols. Only in this
way does communication become possible, for the individual’s experience resides only in
his own consciousness and is, strictly speaking, not communicable.” Later, he continues:
“The relation of thought to word is not a thing but a process, a continual movement back
and forth from thought to word and from word to thought. In that process the relation
of thought to word undergoes changes which themselves may be regarded as development
in the functional sense.” This means in practice that conceptualization is a complex
process that takes place in a socio-cultural context, i.e., within a community of interacting
individuals whose activities result into various kinds of cultural artifacts such as written
texts.

The basic aim in our research group is to provide the means for a more or less auto-
matic process of concept formation. This will facilitate both cost-effective development of
knowledge-intensive systems as well as serve as a good basis for systems that can update
themselves taking into account changes in the domain of interest.

Next we present three specific research areas within conceptual modeling with recent
results. The intersubjective communication model aims at providing a general framework
for explaining how communication between human or artificial agents that have different
conceptual models can be successful and what kind of problems there also may be. We
have also developed a multiagent simulation model of conceptual development. This model
combines probabilistic modeling of concept naming with the self-organization of the un-
derlying conceptual space in an agent population. In the third study, we have conducted
an analysis of philosophy students’ conceptions.
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12.2 Intersubjective communication model

We have recently proposed a theoretical framework for modeling communication between
two agents that have different conceptual models of their current context [5]. We have
described how the emergence of subjective models of the world can be simulated and
what the role of language and communication in that process is. We have considered the
role of unsupervised learning in the formation of agents’ conceptual models, the relative
subjectivity of these models, and the communication and learning processes that lead into
intersubjective sharing of concepts [5].

In this section, we introduce the basic definitions and notation used in our communi-
cation model for two agents. The key concept is the agent’s internal view of its context,
the concept space. The concept space is spanned by a number of features. We can use
the terminology coined by Gärdenfors [2] calling each feature (fi) a quality dimension.
Dimensionalities of the concept spaces can be different for each agent . The concept space
of agent 1 is N -dimensional metric space C1, and for agent 2, C2.

This work has several theoretical and practical implications including the possibility
of approaching interoperability of information systems from a novel point of view. Some
of these implications are discussed next (see the original article [5] for additional details
and references).

The traditional notion of uncertainty in decision making does not cover the uncertain-
ties caused by differences in conceptual systems of individual agents within a community.
We claim that in all transactions including symbolic/linguistic communication the differ-
ences in the underlying conceptual systems play an important role. For instance, serious
efforts have been made to harmonize or to standardize the classification systems used by
business agents, e.g., using Semantic Web technologies. However, even if the standardiza-
tion is conducted, there can not be any true guarantee that all the participating agents
would share the meaning of all the expressions used in the business transactions in various
contexts.

One implication is that in business transactions there should be means for checking
what is a meant by some expressions by an access to a broader context (cf. symbol
grounding). Moreover, rather than relying solely on a standardized conceptual system,
one could introduce mechanisms of meaning negotiation. Before two business agents get
into negotiation about, for instance, the price of some commodity, they should first check
if they agree on what they refer to by the expressions that are used in the negotiation.
This concern is valid both for human and computerized systems, even though humans are
usually capable to conduct meaning negotiations even when they are not aware of it [5].

The harmonization of conceptual systems, such as the creation of ontologies for busi-
ness transactions, has obvious benefits when, for instance, the interoperability of related
information systems is considered. It appears ideal that all systems within some domain
would use similar terminologies and shared ontologies. However, this approach can be
claimed to be idealistic because the continuous change through innovations and other ac-
tivities and the underlying learning processes within the human community lead into the
situation carefully considered in the earlier chapters of this paper. All the agents have a
conceptual system of their own, at least to some degree. Therefore, the harmonization
of the conceptual systems should be considered only as a relative goal. One may aim for
a larger degree of sharing of the conceptual system as before. A central theme is then
to assess the associated benefits and costs. Here we do not try to provide any means to
estimate the benefit of well working harmonized conceptual system implemented, e.g., as
an ontology within the Semantic Web framework [5].

The costs stem from two main sources: the development of a shared conceptual systems
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Figure 12.2: In the intersubjective communication framework, there are two distance
measures ω and λ. ω gives a distance between two points inside the concept space of the
agent, i.e. ω : Ci×Ci → R, i = 1, 2,. λ gives a distance between two points in the concept
spaces of the different agents, i.e. λ : Ci×Cj → R, i #= j. The symbol space S1 of the agent
1 is its vocabulary that consists of discrete symbols. Similarly, the vocabulary of agent
2 consists of symbols S2. An agent i has an individual mapping function ξi that maps
the symbol si ∈ Si to Ci. An agent i expresses each symbol si ∈ Si as a signal d in the
signal space D. The signal space D is multidimensional, continuous and shared between
the agents. Each agent i has an individual mapping function φi from its vocabulary to
the signal space, i.e. φi : Si → D and an inverse mapping φ−i from the signal space to the
symbol space.

and the use of it. The development of an ontology typically consists of defining the concepts
and the relationships between the concepts. The typical stages of an ontology building
process are the following: (1) domain analysis resulting into the requirements specification,
(2) conceptualization resulting into the conceptual model, (3) implementation that leads
into the specification of the conceptual model in the selected representation language, and
(4) the ontology population i.e. the generation of instances and their alignment to the
model that results into the instantiated ontology [5].

The estimation of costs related to the use of ontologies is rather difficult. There are
many kinds of uses of ontologies that require higher or lower degree of familiarity of
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conceptual structures of the domain. A widely cited claims from expertise research is
the 10-year rule, first proposed in relation to expertise development among chess players,
and later generalized to other domains. The essential content of the rule is that anyone
seeking to perform at world-class level in any significant domain must engage in sustained,
deliberate practice in the activity for a period of at least ten years. This figure serves only
as a upper bound of an estimate for a person to learn to master the conceptual content of
a complex domain [5].
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12.3 Multiagent simulation model of conceptual develop-
ment

In [6], we present a model that combines probabilistic modeling of concept naming with
the self-organization of the underlying conceptual space in an agent population. In this
multi-agent simulation framework, we study emergence of a common vocabulary. The self-
organizing map is used for the purpose of transferring sensory perceps into a conceptual
level representations.

In the community of agents, we assume that each agent has its own representation.
While the representations are alike due to similar training data, the representations are
not exactly the same. On top of the concept emergence, we studied shared vocabulary
emergence using a naming game paradigm , in which two agents share a common perceived
context, and they attempt to find a name to match their observation. Each agent matches
the observation to their concept map by finding the best-matching unit for that data
point in the self-organizing map. For that given map unit, each agent then selects the
term to denote that observation based on the maximum likelihood, max(P (C|T )), which is
estimated as the number of successful uses of the term for a given map node, proportional
to all of the successful uses of all the terms in that node. The likelihood is estimated for
all the terms associated with the BMU and for those nodes adjacent to it, and the term
with the highest likelihood is selected and uttered. If no term is found to be associated
with the color or its neighborhood in the self-organizing map, a new term is invented. The
hearer estimates the likelihood P (C|T ) in similar fashion. When a number of games is
played, a common vocabulary emerges in the population.

Figure 12.3: Communication success for N = 2, N = 4 and N = 10 agents in the
population.

Figure 12.3 shows the communication success for two, four and ten agents, each aver-
aged over 10 simulation runs. In the two-agent case, the communication success, the frac-
tion of successful games of the previous hundred games played, rises rapidly to CS = 0.8
and then steadily up to CS = 0.95 during the 10, 000 simulated games. The commu-
nication success for four agents grows slower than in the previous experiment, but still
increases up to CS = 0.86, where it seems to settle. The bigger population size, in the ten-
agent case yields into considerably slower convergence, reaching approximately CS = 0.8
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in 10,000 games.
All the language games are played pair-wise, i.e. only two agents of the whole popu-

lation participate in each game, and other agents have access to the words only through
subsequent language games with the same topic. This means that when the population
size grows, the convergence to common vocabulary is considerably slower. More compet-
ing words for a given topic emerge, and it simply takes longer for each agent to see a
representative subset of the topics.

Figure 12.4: The conceptual memories of the agents in the two-agent simulation. Only
the most probable label for each node is shown.

Figure 12.4 shows the conceptual maps of the two agents in the first experiment. The
colors denote the converged RGB values of the prototype vectors of the map. The map
has organized well and transformations from one color to other are smooth. The eight
prototypical colors used are more prominent, since they are represented more in the data
than the intermediate colors that have resulted from added noise.

When comparing the figures, it is evident that for most prototypical colors there are
one or two words that are preferred: deci is preferred for black or dark, hihi for blue,
fehe for green, hebe for cyan, defebe and gahefa for red, cede for magenta, and babi and
dabide for yellow. For white, the most common word used is gedi, but there are also
competing labels for bluish white, pinkish white and so on because white covers a larger
area in the space. The conceptual memories support the conclusion already visible in the
communication success ratio – that a common vocabulary for the agents has emerged.
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12.4 Analysis of philosophy students’ conceptions

In collaboration with researchers from Helsinki University, Anna-Mari Rusanen, Otto
Lappi and Mikael Nederström, we have used the self-organizing map algorithm to analyze
and visualize the initial conceptions of philosophy students [7].

The general theoretical approach of this study was based on the conceptual change
paradigm. There is a large body of research which shows that novices conceptions do
differ from those of experts, but researchers still remain divided not only about the nature
of those differences, and also the status of novices’ belief systems. Some researchers claim
that novices belief systems are weakly organized systems that are internally inconsistent,
piecemeal and incoherent. Other researchers argue that novice belief systems are not
only internally quite coherent but they may also share the essential properties of scientific
theories.[7]

To obtain information on the students’ conceptions, we used a multiple choice-
questionnaire. The questionnaire included 63 thematically selected items. Three thematic
sets of questions probed (1) the subjects’ ontological commitments with regard to the mind
and the body, (2) hypothetical questions that relate to the possible spatial and temporal
attributes of bodyless minds (3) hypothetical questions that relate to the possible percep-
tual and cognitive attributes of bodyless minds. Each of these conceptual subdomains was
probed with multiple questions, and the students’ responses were examined, coded in the
binary format and used to train a self-organizing map for visualization.[7]

To summarize the results, the overall structure of the map suggests that the students
do not share a clear and coherent set of beliefs on the spatiotemporal attributes of an
immaterial mind, whereas in the case of sensory and cognitive capacities they are quite
consistent. The question of internal coherence of this recurring set of belief remains an
open question, however. The SOM map cannot address this question directly. However,
it does show that if the students are incoherent, they are consistently incoherent in the
same way.[7]
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