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5.1 Introduction

New so-called high-throughput measurement techniques have made possible genome-wide
studies of gene function. Gene expression, gene regulation, protein content, protein inter-
action, and metabolic profiles can be measured and combined with the genetic sequence.
The methods are used routinely in modern biology and medicine, and now the current
challenge is to extract meaningful findings from the noisy and incomplete data masses,
collected into both community resource and private data banks. The data needs to be
analyzed, mined, understood, and taken into account in further experiments, which makes
data analysis an integral part of biomedical research. Successful genome-wide analyses
would allow a completely novel systems-level view into a biological organism.

We develop new modeling and data analysis principles needed for discovering the rele-
vant signals and patterns from among the several measurement sources, and numerous ear-
lier experiments collected into measurement databases. Our multi-source machine learning
methods have proven to be very useful here, and new methods for retrieving and analyzing
relevant experiments have promise for breakthroughs in making the data-driven sciences,
biology and medicine, more cumulative. We have long-standing collaboration with Eu-
ropean Bioinformatics Institute EBI (prof. A. Brazma), Laboratory of Cytomolecular
Genetics (Prof. S. Knuutila), Department of Biological and Environmental Sciences, Uni-
versity of Helsinki (Prof. J. Kangasjärvi), VTT (Prof. M. Orešič), Finnish Institute
for Molecular Medicine FIMM (prof. O. Kallioniemi), and smaller-scale or preliminary
collaboration with several other groups.
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5.2 Translational medicine on metabolic level

Translational medicine is a research field which attempts to more directly bring basic
research findings to clinical practice. One of the necessary steps of this process is to
translate inferences made on the molecular level, for example about metabolites, in model
organisms into inferences about humans. Such translation is extremely challenging and
the existing knowledge, if there is any, is currently largely tacit and only known to experts
of the specific disease and model organism.

Metabolomics is the study of the set of all metabolites found in a sample tissue.
Metabolite concentrations are affected strongly by diseases and drugs, and hence they
complement the genomic, proteomic, and transcriptomic measurements in an excellent
way, in studies of the biological state of an organism.

Our mission is to develop the computational methods needed for making molecular
level translational medicine possible. We have developed new computational methods for
mapping between the observed metabolomics data from model organisms and humans. In
project TRANSCENDO we applied the methods to studies of the emergence of Type I
diabetes, by computing mappings between non-obese diabetic (NOD) mice and children,
and between the effects of a disease in several tissues. The project is collaboration within
a consortium involving computational systems biology (M. Orešič, VTT), semantic mod-
elling (Antti Pesonen, VTT), probabilistic modelling (us), and pharmacology and animal
models of metabolic disease (Eriika Savontaus, University of Turku).

Metabolomic development in humans. Metabolic development in children develop-
ing into Type 1 diabetes is not well understood, and we develop computational methods
in order to shed more light into it. We work on a unique data set of our collaborators
[11], of metabolomic profiles derived from time series of blood samples of a large cohort
of children.

We developed computational methods for studying dynamic differences between time-
series measurements of two populations. In the first phase, differences between healthy
boys and girls were studied [10], and at the moment we are moving forward to actual
translational medicine.

The models operate under the assumption that the metabolic profiles are generated
by a set of unobserved metabolic states, which can as the first approximation be modelled
with Hidden Markov Models (HMM). HMM fits the assumption of latent states very well,
is easy to compute and interpret, and can be extended into more flexible and expressive
models. Moreover, HMM provides a way for probabilistic re-alignment of the time series,
which takes into account the individual variation in the dynamics. The HMMs were able
to separate the boys’ and girls’ metabolic states (Figure 5.1) more efficiently apart than
traditional linear methods.

Disease-related dependencies between multiple tissues. A common setting in
medical research is that a disease may be mainly located in a specific organ, for example
in lungs, but it indirectly affects multiple tissues. Giving drugs to patients induces an
analogous setup: the drugs may affect multiple other tissues in addition to the target
tissue (and hence disease).

A typical analysis setup in any one-tissue (typically blood) biological experiments,
looking for potential biomarkers for disease, is the diseased-healthy differential analysis.
Biological experiments often contain additional covariates, such as drug treatment groups,
gender or time-series, resulting in a multi-way experimental setup. Finding effects of
multiple covariates from the data is a traditional statistical problem dealt with by Analysis
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Figure 5.1: Boys and girls have different development of metabolic states.

of Variance (ANOVA) or in general by linear models. However, the main challenge in
modern molecular biology is that the number of samples (such as mice or human patients)
is small due to economical and ethical reasons, and the number of variables (genes or
metabolites) is huge. Due to this, the traditional multivariate methods cannot be used,
and few modern methods exist for this task. To address this broad and common set of
problems, we developed a Bayesian model family for multi-way analysis of small sample-
size, high-dimensional datasets [5].

The problem becomes even more interesting when the different data sources (here
tissues) form different variable-spaces. Then stardard approaches are not applicable even
in principle. Our model can be extended even to this case, by considering the different
sources as different “views” in the sense of multi-view machine learning. The extended
model is able to find the multi-way covariate-effects and to partion them into shared and
source-specific effects. The method is applicable to any small sample-size, multi-source
experiments, currently very popular in biological research. We call the general problem
(Figure 5.2) Multi-Way, Multi-View Learning [6].
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Figure 5.2: (a) Multi-way analysis studies datasets with two or more covariates for each
sample. The task is to find the effects of the covariates in the data (b) Multi-source
analysis studies dependencies between two or more datasets with paired samples without
covariate information. (c) Multi-way, multi-source analysis combines both tasks. The task
is to find shared and source-specific covariate effects. In the data matrices, rows represent
samples, and columns represent variables.

5.3 Retrieval and visualization of relevant experiments

Repositories of genome-wide expression studies such as ArrayExpress [12] are becoming
mature both in size and data annotation quality. This brings in the research question of
how to systematically relate studies contained within those repositories. By allowing data
to be re-used on a mass scale, researchers will be able to access a meaningful biological
context to aid in the planning and analysis of new studies. This will in turn increase
the statistical power of novel studies and put biological results in the context of previous
studies. Most repositories contain basic text search functionalities that allow retrieving
studies whose textual descriptions contain certain keywords (e.g. ’cancer’). This paradigm
has several shortcomings. First, the textual description of an experiment or its results is
not as information-rich as the actual data itself. Secondly, it does not provide any solution
with respect to analyzing the retrieved study and rigorously comparing it to a novel study.
In collaboration with the Brazma group at The European Bioinformatics Institute, which
has created and maintains the ArrayExpress database, we are working towards developing
machine learning methods that relate studies through their actual expression data, along
with visualization tools that allow exploring and interpreting the results.

Content-based information retrieval for differential expression. Gene expression
studies often involve differential expression analyses that allow assessing genes or pathways
for consistent changes in expression in a phenotype of interest (e.g. cancerous tissue
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Figure 5.3: Figure taken from Caldas et al. [2]. (A) The experiment collection visualized as
glyphs on a plane. (B) The method represents each experiment as a collection of so-called
biological topics or components. Slice color and width represent the importance of each
component in an experiment. (C) Enlarged region from (A) where glyphs have additionally
been scaled according to their relevance to a query with a malignant melanoma experiment
shown in the center. The surrounding experiments are either from cancer or from primary
hyperparathyroidism, which is known to be associated with a higher incidence of cancer.

versus healthy tissue). Recently, it has been shown that differential expression analysis
at the level of pathways or gene sets leads to improved and more robust results than
differential expression at the gene level [15]. As the first prototype of our biological content-
based information retrieval paradigm, we have developed a method that allows relating
studies in a repository through shared patterns of gene set differential expression, using a
combination of state-of-the-art nonparametric statistics and machine learning approaches
[2]. We have also developed novel visualization tools that allow exploring both the data
and the retrieval results. Our results show that, given a so-called query study, the method
provides a set of other studies where most target the same biological question (e.g. cancer
studies) (Fig.5.3). It is also able to find highly non-trivial relations between significantly
different pathological entities which were confirmed in the literature. Finally, the retrieval
results are interpretable, in the sense that the method provides the patterns of differential
expression that are responsible for the inferred relevances (Fig.5.4). Although there has
been previous work related to large-scale analysis of differential expression, ours is the first
to highlight the potential of performing content-based, interpretable information retrieval
in a rigorous and principled manner.
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Figure 5.4: Figure taken from Caldas et al. [2]. A circular visualization that associates
biological studies (labels on the left) to recurrent patterns (circles in the middle), and
recurrent patterns to known biological pathways (labels on the right). The left figure
shows the general visualization; the degree of association between studies, patterns, and
pathways is encoded through edge opacity, where each color is specific to one pattern.
In the right figure, the labels of both biological experiments and pathways are scaled
according to the degree of association with recurrent pattern number 2. The figure shows
an association between several cancer studies (e.g. sporadic basal-like breast cancer) and
a collection of cell cycle-related biological pathways.

5.4 Fusion of heterogeneous biomedical data

A living cell is an extremely complex system, and hence integration of information from
multiple sources is needed for revealing the true potential of the modern high-throughput
measurement methods, such as gene expression or micro-RNA data, combined with rela-
tional information of the genes, environmental factors, and disease.

Much of the blooming data integration literature focuses either on well-targeted combi-
nations of sources, such as using sequence-based regulators for explaining gene expression,
or on well-focused prediction tasks such as predicting molecular interactions from several
data sources. We have focused on knowledge discovery-types of problems where the goal
is to discover what is relevant in massive data sets by searching for connections between
data sources. This will become more concrete below. Additionally, we have worked on
more specific but application-wise interesting problems, such as detection and analysis of
deficiencies in the measurements [8].

Dependency modeling. We consider the data fusion problem of combining two or
more data sources where each source consists of vector-valued measurements from the same
object or entities but on different variables. The task is to include only those aspects which
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Figure 5.5: Gene expression, copy number signal, and the dependency between the two
data sources along chromosome arm 17q in gastric cancer patients. The model detects
known cancer associated genes (red dots) with high sensitivity. The Figure is from [9].

are mutually informative of each other. This task of including only shared aspects of data
sources is motivated through two interrelated lines of thought. The first is noise reduction.
If the data sources are measurements of the same entity corrupted by independent noise,
discarding source-specific aspects will discard the noise and leave the shared properties
that describe the shared entity. The second motivation is to analyze what is interesting
in the data. We have investigated, for example, functional effects of DNA mutations by
observing dependencies between gene expression and copy number levels across cancer
genomes [9]. In these works, the shared variation of the data sources is of primary interest
(Figure 5.5). The data set specific effects, often regarded as “noise”, may have specific
structure; its definition is simply that it is source-specific. The data set specific effects
can also be of interest in certain applications. In [14], for example, the decomposition of
gene and protein expression levels into shared and data set specific effects was used to
distinguish between pre- and post-translational regulation.

We have developed novel ways to bring in prior information to dependency modeling
tasks [9]. This helps to reduce overfitting and focus the modeling on the interesting parts
of the data, which is critical in many biomedical applications with small sample sizes. We
have also released an open-source software package for general fusion of biological data
sets, using generalized canonical correlation analysis for both combining the data sets and
finding a lower-dimensional representation for them [16].

Dependency models are potentially applicable for modeling other regulatory mecha-
nisms such as transcription factors [7], or micro-RNAs that form a recently discovered
and central class of cellular regulators. While causality and confounding factors are often
unknown in these studies, detection of statistical dependencies provides a useful proxy
for such effects. Future extensions of the dependency models will provide tools to detect
multi-level relations between various regulatory mechanisms and gene activity.

Matching of entities. Most data fusion approaches assume co-occurring data sources,
in the sense that all sources are different representations of the same entities. For example,
in joint analysis of several mRNA experiments we assume the same set of genes has been
measured in each experiment. Due to heterogenity of the biological data sources this
assumption, however, does not always hold. If the experiments have been measured with
different platforms the mapping between the probes might not be perfectly known, or in
translational medicine the sources (tissues or species) might even have different entities
altogether.
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We have introduced a novel method that learns the matching of the entities in a data-
driven way, using the actual measurements to find the co-occurrences [17]. The method
is based on a very intuitive principle: The matching that gives maximal statistical depen-
dency between the sources is most likely to be correct. The approach can either be used
to complement a partial match found based on auxiliary data sources (such as sequence
similarity when matching probes of two microarrays), or even to learn the matching from
scratch.

Bayesian biclustering. Biclustering is the computational task of simultaneously clus-
tering objects and inferring which features of the objects contribute to the grouping. It
is a highly relevant area in gene expression bioinformatics, when one aims at finding re-
stricted biological conditions where certain genes exhibit similar behavior, or alternatively
at finding groups of genes with respect to which a set of biological conditions is similar.
It is also deeply connected to the fields of content-based information retrieval and data
fusion.

We have first adapted an existing promising model to the Bayesian framework, allowing
the model to handle noise and endowing it with a rigorous inference engine [1]. More
recently, we have developed a hierarchical nonparametric biclustering method [4]. Using
recent advances in probabilistic machine learning, our method is able to generate a flexible
tree structure of biclusters while keeping computations feasible. We showed that the model
achieves state-of-the-art performance on a large data set, and that the model naturally
lends itself to hierarchical content-based information retrieval. Finally, we highlighted how
the information retrieval functionality can be used to mine for novel biological knowledge,
via a case study that provides insight into the potential novel role of miR-224 in the
association between melanoma and non-Hodgkin lymphoma.

Searching for functional modules. Functional gene modules and protein complexes
have been sought from both protein-protein interaction and gene expression data with
various clustering-type methods. We have devised a combined generative model for these
data that directly models noise in both data types [13]. The model outperforms other
state-of-the-art methods in the task of discovering functional modules. In addition, it is
able to detect overlapping modules, in which proteins may have different roles.
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Erdogmus and T. Adali, editors, Proceedings of the IEEE International Workshop on
Machine Learning for Signal Processing XVIII, 2008.

[2] J. Caldas, N. Gehlenborg, A. Faisal, A. Brazma, and S. Kaski. Probabilistic retrieval
and visualization of biologically relevant microarray experiments. Bioinformatics,
25(12):i145–i153, 2009.

[3] J. Caldas, N. Gehlenborg, A. Faisal, A. Brazma, and S. Kaski. Probabilistic retrieval
and visualization of biologically relevant microarray experiments. BMC Bioinformat-
ics, 10(suppl.13):P1, 2009.

[4] J. Caldas and S. Kaski. Generative tree biclustering for information retrieval and
microrna biomarker discovery. In Proceedings of the 14th International Conference on
Research in Computational Molecular Biology, 2010. To appear.



106 Bioinformatics

[5] I. Huopaniemi, T. Suvitaival, J. Nikkilä, S. Kaski, and M. Orešič. Two-way analysis
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